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Abstract

The complex correlation structure of a collection of orthologous DNA sequences is uniquely captured by the ‘‘ancestral
recombination graph’’ (ARG), a complete record of coalescence and recombination events in the history of the sample.
However, existing methods for ARG inference are computationally intensive, highly approximate, or limited to small
numbers of sequences, and, as a consequence, explicit ARG inference is rarely used in applied population genomics. Here,
we introduce a new algorithm for ARG inference that is efficient enough to apply to dozens of complete mammalian
genomes. The key idea of our approach is to sample an ARG of n chromosomes conditional on an ARG of n{1
chromosomes, an operation we call ‘‘threading.’’ Using techniques based on hidden Markov models, we can perform this
threading operation exactly, up to the assumptions of the sequentially Markov coalescent and a discretization of time. An
extension allows for threading of subtrees instead of individual sequences. Repeated application of these threading
operations results in highly efficient Markov chain Monte Carlo samplers for ARGs. We have implemented these methods in
a computer program called ARGweaver. Experiments with simulated data indicate that ARGweaver converges rapidly to the
posterior distribution over ARGs and is effective in recovering various features of the ARG for dozens of sequences
generated under realistic parameters for human populations. In applications of ARGweaver to 54 human genome sequences
from Complete Genomics, we find clear signatures of natural selection, including regions of unusually ancient ancestry
associated with balancing selection and reductions in allele age in sites under directional selection. The patterns we observe
near protein-coding genes are consistent with a primary influence from background selection rather than hitchhiking,
although we cannot rule out a contribution from recurrent selective sweeps.
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Introduction

At each genomic position, orthologous DNA sequences drawn

from one or more populations are related by a branching structure

known as a genealogy [1,2]. Historical recombination events lead

to changes in these genealogies from one genomic position to the

next, resulting in a correlation structure that is complex,

analytically intractable, and poorly approximated by standard

representations of high-dimensional data. Over a period of many

decades, these unique features of genetic data have inspired

numerous innovative techniques for probabilistic modeling and

statistical inference [3–9], and, more recently, they have led to a

variety of creative approaches that achieve computational

tractability by operating on various summaries of the data [10–

17]. Nevertheless, none of these approaches fully captures the

correlation structure of collections of DNA sequences, which

inevitably leads to limitations in power, accuracy, and generality in

genetic analysis.

In principle, the correlation structure of a collection of colinear

orthologous sequences can be fully described by a network known

as an ancestral recombination graph (ARG) [18–20]. An ARG provides

a record of all coalescence and recombination events since the

divergence of the sequences under study and specifies a complete

genealogy at each genomic position (Figure 1A). In many senses,

the ARG is the ideal data structure for population genomic

analysis. Indeed, if an accurate ARG could be obtained, many

problems of interest today—such as the estimation of recombina-

tion rates or ancestral effective population sizes—would become

trivial, while many other problems—such as the estimation of

population divergence times, rates of gene flow between popula-

tions, or the detection of selective sweeps—would be greatly

simplified. Various data representations in wide use today,

including the site frequency spectrum, principle components,

haplotype maps, and identity by descent spectra, can be thought of

as low-dimensional summaries of the ARG and are strictly less

informative.

An extension of the widely used coalescent framework [1,2,9]

that includes recombination [21] is regarded as an adequately rich

generative process for ARGs in most settings of interest. While

simulating an ARG under this model is fairly straightforward,
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however, using it to reconstruct an ARG from sequence data is

notoriously difficult. Furthermore, the data are generally only

weakly informative about the ARG, so it is often desirable to

regard it as a ‘‘nuisance’’ variable to be integrated out during

statistical inference (e.g., [22]). During the past two decades,

various attempts have been made to perform explicit inference of

ARGs using techniques such as importance sampling [19,22] (see

also [23]) and Markov chain Monte Carlo sampling [24–27].

There is also a considerable literature on heuristic or approximate

methods for ARG reconstruction in a parsimony framework [28–

35]. Several of these approaches have shown promise, but they are

generally highly computationally intensive and/or limited in

accuracy, and they are not suitable for application to large-scale

data sets. As a result, explicit ARG inference is rarely used in

applied population genomics.

The coalescent-with-recombination is conventionally described

as a stochastic process in time [21], but Wiuf and Hein [36]

showed that it could be reformulated as a mathematically

equivalent process along the genome sequence. Unlike the process

in time, this ‘‘sequential’’ process is not Markovian because long-

range dependencies are induced by so-called ‘‘trapped’’ sequences

(genetic material nonancestral to the sample flanked by ancestral

segments). As a result, the full sequential process is complex and

computationally expensive to manipulate. Interestingly, however,

simulation processes that simply disregard the non-Markovian

features of the sequential process produce collections of sequences

that are remarkably consistent in most respects with those

generated by the full coalescent-with-recombination [37,38]. In

other words, the coalescent-with-recombination is almost Mar-

kovian, in the sense that the long-range correlations induced by

trapped material are fairly weak and have a minimal impact on the

data. The original Markovian approximation to the full process

[37] is known as the sequentially Markov coalescent (SMC), and an

extension that allows for an additional class of recombinations [38]

is known as the SMC’.

In recent years, the SMC has become favorite starting point for

approximate methods for ARG inference [39–42]. The key insight

Figure 1. An ancestral recombination graph (ARG) for four
sequences. (A) Going backwards in time (from bottom to top), the
graph shows how lineages that lead to modern-day chromosomes
(bottom) either ‘‘coalesce’’ into common ancestral lineages (dark blue
circles), or split into the distinct parental chromosomes that were joined
(in forward time) by recombination events (light blue circles). Each
coalescence and recombination event is associated with a specific time
(dashed lines), and each recombination event is also associated with a
specific breakpoint along the chromosomes (here, b2 and b3). Each non-
recombining interval of the sequences (shown in red, green, and
purple) corresponds to a ‘‘local tree’’ embedded in the ARG (shown in
matching colors). Recombinations cause these trees to change along
the length of the sequences, making the correlation structure of the

data set highly complex. The ARG for four sequences is denoted G4 in

our notation. (B) Representation of G4 in terms of a sequence of local

trees T4 and recombination events R4 . A local tree T4
i is shown for each

nonrecombining segment in colors matching those in (A). Each tree, T4
i ,

can be viewed as being constructed from the previous tree, T4
i{1 , by

placing a recombination event along the branches of T4
i{1 (light blue

circles), breaking the branch at this location, and then allowing the
broken lineage to re-coalesce to the rest of the tree (dashed lines in
matching colors; new coalescence points are shown in gray). Together,
the local trees and recombinations provide a complete description of
the ARG. The Sequentially Markov Coalescent (SMC) approximate the
full coalescent-with-recombination by assuming that Tn

i is statistically
independent of all previous trees given Tn

i{1 . (C) An alignment of four

sequences, D4, corresponding to the linearized ARG shown in (B). For
simplicity, only the derived alleles at polymorphic sites are shown. The
sequences are assumed to be generated by a process that samples an
ancestral sequences from a suitable background distribution, then
allows each nonrecombining segment of this sequence to mutate
stochastically along the branches of the corresponding local tree.
Notice that the correlation structure of the sequences is fully
determined by the local trees; that is, Dn is conditionally independent
of the recombinations Rn given the local trees Tn .
doi:10.1371/journal.pgen.1004342.g001

Author Summary

The unusual and complex correlation structure of popu-
lation samples of genetic sequences presents a funda-
mental statistical challenge that pervades nearly all areas
of population genetics. Historical recombination events
produce an intricate network of intertwined genealogies,
which impedes demography inference, the detection of
natural selection, association mapping, and other applica-
tions. It is possible to capture these complex relationships
using a representation called the ancestral recombination
graph (ARG), which provides a complete description of
coalescence and recombination events in the history of
the sample. However, previous methods for ARG inference
have not been adequately fast and accurate for practical
use with large-scale genomic sequence data. In this article,
we introduce a new algorithm for ARG inference that has
vastly improved scaling properties. Our algorithm is
implemented in a computer program called ARGweaver,
which is fast enough to be applied to sequences
megabases in length. With the aid of a large computer
cluster, ARGweaver can be used to sample full ARGs for
entire mammalian genome sequences. We show that
ARGweaver performs well in simulation experiments and
demonstrate that it can be used to provide new insights
about both demographic processes and natural selection
when applied to real human genome sequence data.

Genome-Wide ARG Inference
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behind these methods is that, if the continuous state space for the

Markov chain (consisting of all possible genealogies) is approxi-

mated by a moderately sized finite set—typically by enumerating

tree topologies and/or discretizing time—then inference can be

performed efficiently using well-known algorithms for hidden

Markov models (HMMs). Perhaps the simplest and most elegant

example of this approach is the pairwise sequentially Markov

coalescent (PSMC) [42], which applies to pairs of homologous

chromosomes (typically the two chromosomes in a diploid

individual) and is used to reconstruct a profile of effective

population sizes over time. In this case, there is only one possible

tree topology and one coalescence event to consider at each

genomic position, so it is sufficient to discretize time and allow for

coalescence within any of k possible time slices. Using the resulting

k-state HMM, it is possible to perform inference integrating over

all possible ARGs. A similar HMM-based approach has been used

to estimate ancestral effective population sizes and divergence

times from individual representatives of a few closely related

species [39–41]. Because of their dependency on a complete

characterization of the SMC state space, however, these methods

can only be applied to small numbers of samples. This limits their

utility with newly emerging population genomic datasets and leads

to reduced power for certain features of interest, such as recent

effective population sizes, recombination rates, or local signatures

of natural selection.

An alternative modeling approach, with better scaling proper-

ties, is the product of approximate conditionals (PAC) or

‘‘copying’’ model of Li and Stephens [43]. The PAC model is

motivated primarily by computational tractability and is not based

on an explicit evolutionary model. The model generates the nth

sequence in a collection by concatenating (noisy) copies of

fragments of the previous n{1 sequences. The source of each

copied fragment represents the ‘‘closest’’ (most recently diverged)

genome for that segment, and the noise process allows for

mutations since the source and destination copies diverged. The

PAC framework has been widely used in many applications in

statistical genetics, including recombination rate estimation, local

ancestry inference, haplotype phasing, and genotype imputation

(e.g., [44–48]), and it generally offers good performance at

minimal computational cost. Recently, Song and colleagues have

generalized this framework to make use of conditional sampling

distributions (CSDs) based on models closely related to, and in

some cases equivalent to, the SMC [49–52]. They have

demonstrated improved accuracy in conditional likelihood calcu-

lations [49,50] and have shown that their methods can be effective

in demographic inference [51,52]. However, their approach

avoids explicit ARG inference and therefore can only be used to

characterize properties of the ARG that are directly determined by

model parameters (see Discussion).

In this paper, we introduce a new algorithm for ARG inference

that combines many of the benefits of the small-sample SMC-

based approaches and the large-sample CSD-based methods. Like

the PSMC, our algorithm requires no approximations beyond

those of the SMC and a discretization of time, but it improves on

the PSMC by allowing multiple genome sequences to be

considered simultaneously. The key idea of our approach is to

sample an ARG of n sequences conditional on an ARG of n{1
sequences, an operation we call ‘‘threading.’’ Using HMM-based

methods, we can efficiently sample new threadings from the exact

conditional distribution of interest. By repeatedly removing and re-

threading individual sequences, we obtain an efficient Gibbs

sampler for ARGs. This basic Gibbs sampler can be improved by

including operations that rethread entire subtrees rather than

individual sequences. Our implementation of these methods,

called ARGweaver, is efficient enough to sample full ARGs on a

genome-wide scale for dozens of diploid individuals. Simulation

experiments indicate that ARGweaver converges rapidly and is able

to recover many properties of the true ARG with good accuracy.

In addition, our explicit characterization of the ARG enables us to

examine many features not directly described by model param-

eters, such as local times to most recent common ancestry, allele

ages, and gene tree topologies. These quantities, in turn, shed light

on both demographic processes and the influence of natural

selection across the genome. For example, we demonstrate, by

applying ARGweaver to 54 individual human sequences from

Complete Genomics, that it provides insight into the sources of

reduced nucleotide diversity near functional elements, the

contribution of balancing selection to regions containing very

old polymorphisms, and the relative influences of direct and

indirect selection on allele age. Our ARGweaver software (https://

github.com/mdrasmus/argweaver), our sampled ARGs (http://

compgen.bscb.cornell.edu/ARGweaver/CG_results), and genome-

browser tracks summarizing these ARGs (http://genome-mirror.bscb.

cornell.edu; assembly hg19) are all freely available.

Results

The Sequentially Markov Coalescent
The starting point for our model is the Sequentially Markov

Coalescent (SMC) introduced by McVean and Cardin [37]. We

begin by briefly reviewing the SMC and introducing notation that

will be useful below in describing a general discretized version of

this model.

The SMC is a stochastic process for generating a sequence of

local trees, Tn~Tn
1 ,:::,Tn

m and corresponding genomic break-

points b~b1, . . . , bmz1, such that each Tn
i (1ƒiƒm) describes

the ancestry of a collection of n sequences in a nonrecombining

genomic interval ½bi,biz1), and each breakpoint bi between

intervals Tn
i{1 and Tn

i corresponds to a recombination event

(Figure 1B). The model is continuous in both space and time, with

each node v in each Tn
i having a real-valued age t(v)§0 in

generations ago, and each breakpoint bi falling in the continuous

interval ½0, L�, where L is the total length of the genomic segment

of interest in nucleotide sites. The intervals are exhaustive and

nonoverlapping, with b1~0, bmz1~L, and bivbiz1 for all i.
Each Tn

i is a binary tree with t(v)~0 for all leaf nodes v. We will

use the convention of indexing branches in the trees by their

descendant nodes; that is, branch v is the branch between node v
and its parent.

As shown by Wiuf and Hein [36], the correlation structure of

the local trees and recombinations under the full coalescent-with-

recombination is complex. The SMC approximates this distribu-

tion by assuming that Tn
i is conditionally independent of

Tn
1 , . . . ,Tn

i{2 given Tn
i{1, and, similarly, that bi depends only on

bi{1 and Ti{1, so that,

P(Tn, bDN, r)

~P(Tn
1 DN) P

m

i~2
P(bi Dbi{1,Tn

i{1)P(Tn
i DTn

i{1, N, r)

� �

P(bmz1~LDbm,Tn
m),

ð1Þ

where N is the effective population size, r is the recombination

rate, and it is understood that b1~0. Thus, the SMC can be

viewed as generating a sequence of local trees and corresponding

breakpoints by a first-order Markov process. The key to the model

is to define the conditional distributions P(bi Dbi{1,Tn
i{1) and

Genome-Wide ARG Inference
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P(Tn
i DTn

i{1, N, r) such that this Markov process closely approx-

imates the coalescent-with-recombination. Briefly, this is accom-

plished by first sampling the initial tree Tn
1 from the standard

coalescent and setting b1~0, and then iteratively (i) determining

the next breakpoint, bi, by incrementing bi{1 by an exponential

random variate with rate rDTn
i{1D, where DTn

i D denotes the total

branch length of Tn
i ; (ii) sampling a recombination point

Ri~(wi,ui) uniformly along the branches beneath the root of

Tn
i{1, where wi is a branch and ui is a time along that branch; (iii)

dissolving the branch wi above point ui; and (iv) allowing wi to

rejoin the remainder of tree Tn
i{1 above time ui by the standard

coalescent process, creating a new tree Tn
i (Figure 1B). As a

generative process for an arbitrary number of genomic segments,

the SMC can be implemented by simply repeating the iterative

process until bi§L, then setting m equal to i{1 and bmz1 equal

to L.

Notice that, if the sampled recombination points Ri are

retained, this process generates not only a sequence of local trees

but a complete ARG. In addition, a sampled sequence of local

trees, Tn, is sufficient for generation of n aligned DNA sequences

corresponding to the leaves of the trees (Figure 1C). Augmented in

this way, the SMC can be considered a full generative model for

ARGs and sequence data.

The Discretized Sequentially Markov Coalescent
We now define an approximation of the SMC that is discrete in

both space and time, which we call the Discretized Sequentially

Markov Coalescent (DSMC). The DSMC can be viewed as a

generalization to multiple genomes of the discretized pairwise

sequentially Markov coalescent (PSMC) used by Li and Durbin

[42]. It is also closely related to several other recently described

discretized Markovian coalescent models [39,40,50].

The DSMC assumes that time is partitioned into K intervals,

whose boundaries are given by a sequence of time points

P~(s0,:::,sK ), with s0~0, sjz1wsj for all j (0ƒjvK ), and sK

equal to a user-specified maximum value. (See Table 1 for a key to

the notation used in this paper.) Every coalescence or recombi-

nation event is assumed to occur precisely at one of these Kz1
time points. Various strategies can be used to determine these time

points (see, e.g., [50]). In this paper, we simply distribute them

uniformly on a logarithmic scale, so that the resolution of the

discretization scheme is finest near the leaves of the ARG, where

the density of events is expected to be greatest (see Methods). Each

local block is assumed to have an integral length measured in base

pairs, with all recombinations occurring between adjacent

nucleotides. The DSMC approaches the SMC as the number of

intervals K and the sequence length L grow large, for fixed N and

r.

Like the SMC, the DSMC generates an ARG Gn for n (haploid)

sequences, each containing L nucleotides (Figure 1B). In the

discrete setting, it is convenient to define local trees and

recombination events at the level of individual nucleotide

positions. Assuming that Rn
i denotes a recombination between

Tn
i{1 and Tn

i , we write Gn~(Tn, Rn), with Tn~(Tn
1 ,:::,Tn

L) for

positions 1, . . . ,L, and Rn~(Rn
2,:::,Rn

L). Notice that it is possible in

this setting that Rn
i ~1 and Tn

i ~Tn
i{1. Where a recombination

occurs (Rn
i =1), we write Rn

i ~(wi,ui) where wi is the branch in

Tn
i{1 and ui[P is the time point of the recombination. For

simplicity and computational efficiency, we assume that at most

one recombination occurs between each pair of adjacent sites.

Given the sparsity of variant sites in most data sets, this

simplification is likely to have, at most, a minor effect during

inference (see Discussion).

Like the SMC, the DSMC can additionally be used to generate

an alignment of DNA sequences (Figure 1C). We denote such an

alignment by Dn~(Dn
1, . . . , Dn

L), where each Dn
i represents an

alignment column of height n. Each Dn
i can be generated, in the

ordinary way, by sampling an ancestral allele from an appropri-

ate background distribution, and then allowing this allele to

mutate stochastically along the branches of the corresponding

local tree, in a branch-length-dependent manner. We denote the

induced conditional probability distribution over alignment

columns by P(Dn
i DT

n
i ,m), where m is the mutation rate. In this

work, we assume a Jukes-Cantor model [53] for nucleotide

mutations along the branches of the tree, but another mutation

model can easily be used instead. Notice that, while the

recombinations Rn are required to define the ARG completely,

the probability of the sequence data given the ARG depends only

on the local trees Tn.

The Threading Problem
In the case of an observed alignment, Dn, and an unobserved

ARG, Gn~(Tn, Rn), the DSMC can be viewed as a hidden

Markov model (HMM) with a state space given by all possible

local trees, transition probabilities given by expressions of the form

P(Rn
i DT

n
i{1, r) P(Tn

i DRn
i ,Tn

i{1,N), and emission probabilities given

by the conditional distributions for alignment columns,

P(Dn
i DT

n
i ,m). The complete data likelihood function of this

model—that is, the joint probability of an ARG Gn~(Tn, Rn)
and a sequence alignment Dn given model parameters

H~(m, r, N)—can be expressed as a product of these terms over

alignment positions (see Methods for further details):

P(Tn, Rn, DnDH)

~ P(Tn
1 DN)P(Dn

1DT
n
1 , m) P

L

i~2
P(Rn

i DT
n
i{1, r) P(Tn

i DRn
i , Tn

i{1, N)

P(Dn
i DT

n
i , m):

ð2Þ

This HMM formulation is impractical as a framework for direct

inference, however, because the set of possible local trees—and

hence the state space—grows super-exponentially with n. Even

with additional assumptions, similar approaches have only

been able to accommodate small numbers of sequences

[32,35,54].

Instead, we use an alternative strategy with better scaling

properties. The key idea of our approach is to sample the ancestry

of only one sequence at a time, while conditioning on the ancestry

of the other n{1 sequences. Repeated applications of this

‘‘threading’’ operation form the basis of a Markov chain Monte

Carlo sampler that explores the posterior distribution of ARGs. In

essence, the threading operation adds one branch to each local

tree in a manner that is consistent with the assumed recombination

process and the observed data (Figure 2). While conditioning on a

given set of local trees introduces a number of technical challenges,

the Markovian properties of the DSMC are retained in the

threading problem, and it can be solved using standard dynamic

programming algorithms for HMMs.

The threading problem can be precisely described as follows.

Assume we are given an ARG for n{1 sequences, Gn{1, a

corresponding data set Dn{1, and a set of model parameters

H~(m, r, N): Assume further that Gn{1 is consistent with the

assumptions of the DSMC (for example, all of its recombination

and coalescent events occur at time points in P and it contains at

most one recombination per position). Finally, assume that we are

given an nth sequence d, of the same length of the others, and let

Genome-Wide ARG Inference
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Dn~(Dn{1,d): The threading problem is to sample a new ARG

Gn from the conditional distribution P(GnDGn{1,Dn,H) under the

DSMC.

The problem is simplified by recognizing that Gn can be defined

by augmenting Gn{1 with the additional recombination and

coalescence events required for the nth sequence. First, let Gn{1

be represented in terms of its local trees and recombination points:

Gn{1~(Tn{1, Rn{1). Now, observe that specifying the new

coalescence events in Gn{1 is equivalent to adding one branch to

each local tree, Tn{1
i for i[f1, . . . ,Lg, to obtain a new tree Tn

i

(Figure 2). Let us denote the point at which each of these new

branches attaches to the smaller subtree at each genomic position i

by yi~(xi,ti), where xi indicates a branch in Tn{1
i and ti[P

indicates the coalescence time along that branch. Thus, the

coalescence threading of the nth sequence is given by the sequence

Y~(y1,:::,yL).

To complete the definition of Gn, we must also specify the

precise locations of the additional recombinations associated with

the threading—that is, the specific time point at which each

branch in a local tree Ti{1 was broken before the branch was

allowed to re-coalesce in a new location in tree Ti. Here it is

useful to partition the recombinations into those that are given by

Gn{1, denoted Rn{1, and those new to Gn, which we denote

Z~(z1, . . . ,zL) (Figure 3A&B). Each zi is either null (zi~1),

meaning that there is no new recombination between Tn
i{1 and

Tn
i , or defined by zi~(wi,ui), where wi is a branch in Tn

i{1 and

ui[P is the time along that branch at which the recombination

occurred. We call Z the recombination threading of the nth sequence.

For reasons of efficiency, we take a two-step approach to

threading: first, we sample the coalescence threading Y , and

second, we sample the recombination threading Z conditional on

Y . This separation into two steps allows for a substantially

reduced state space during the coalescence threading operation,

leading to significant savings in computation. When sampling the

coalescence threading (step one), we integrate over the locations

of the new recombinations Z, as in previous work [42,50].

Sampling the recombination threading (step two) can be

accomplished in a straightforward manner independently for

each recombination event, by taking advantage of the conditional

Table 1. Key to notation.

Population Genetic Parameters

m Mutation rate, in events per site per generation

r Recombination rate, in events per site per generation

N Effective population size, in number of individualsa

H Full parameter set, H~(m, r, N)

Time Discretization

K Total number of time intervals (user-defined)

sj Time point j (0ƒjƒK), defining a boundary between time intervals (generations before present)

Dsj Length of jth time interval, Dsj~sjz1{sj

sjz1
2

Midpoint of jth time interval

B(T , j) Set of branches in a tree T associated with time interval j

Bj Number of branches associated with time interval j, Bj~DB(T ,j)D (with T determined by context)

A(T , j) Set of ‘‘active’’ branches at time point j

Aj Number of ‘‘active’’ branches at time point j, Aj~DA(T ,j)D (with T determined by context)

Ancestral Recombination Graph

L Length of analyzed sequence alignment in nucleotides

n Number of sequences in alignment

Dn
i Alignment column at ith position; cumulatively, Dn~(Dn

1, . . . ,Dn
L)

Tn
i Local tree for ith position; cumulatively, Tn~(Tn

1 , . . . ,Tn
L)

Rn
i Recombination point between i{1st and ith position; cumulatively, Rn~(Rn

2, . . . , Rn
L)

Gn Full ARG for n sequences, Gn~(Tn, Rn)

yi~(ui , ti) Coalescence point for threaded sequence at ith position, defined by a branch ui and a time point ti ;
cumulatively, Y~(y1, . . . , yL)

zi~(wi , ui) Recombination point for threaded sequence between positions i{1 and i, defined by a branch wi

and a time point ui ; cumulatively, Z~(z2, . . . , zL)

Hidden Markov Model

ai
l,m

Transition probability from state l to state m between position i and iz1

pl Initial state probability for state l

bi
l (D

n
i ) Emission probability for alignment column Dn

i in state l at position i

aModel allows for a separate Ni for each time interval l but all analyses in this paper assume a constant N across time intervals.
doi:10.1371/journal.pgen.1004342.t001
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independence structure of the DSMC model (see Methods for

details).

The core problem, then, is to accomplish step one by sampling

the coalescence threading Y from the distribution,

P(Y D�TTn{1, �RRn{1, �DDn,H)!P(Y ,�TTn{1, �RRn{1, �DDnDH)

~P(�TTn{1
1 , y1DN) P( �DDn

1D�TT
n{1
1 , y1, m)

P
L

i~2
P(�RRn{1

i , �TTn{1
i , yi D�TTn{1

i{1 , yi{1, r, N) P( �DDn
i D�TTi

n{1
, yi, m),

ð3Þ

where the notation �AA indicates that random variable A is held

fixed (‘‘clamped’’) at a particular value throughout the procedure.

This equation defines a hidden Markov model with a state space

given by the possible values of each yi, transition probabilities

given by ai
l,m~P(�RRn{1

i ,�TTn{1
i , yi~mD�TTn{1

i{1 ,yi{1~l,r,N) and

emission probabilities given by bi
m(Dn

i )~P(Dn
i D�TT

n{1
i , yi~m, m)

(Figure 3C). Notice that the location of each new recombination,

zi, is implicitly integrated out in the definition of ai
l,m. Despite

some unusual features of this model—for example, it has a

heterogeneous state space and normalization structure along the

sequence—its Markovian dependency structure is retained, and

the problem of drawing a coalescent threading Y from the desired

conditional distribution can be solved exactly by dynamic

programming using the stochastic traceback algorithm for HMMs.

Additional optimizations allow this step to be completed in time

linear in both the number of sequences n and the alignment length

L and quadratic only in the number of time intervals K (see

Methods for details).

Markov Chain Monte Carlo Sampling
The main value of the threading operation is in its usefulness as

a building block for Markov chain Monte Carlo methods for

sampling from an approximate posterior distribution over ARGs

given the data. We employ three main types of sampling

algorithms based on threading, as described below.

Sequential sampling. First, the threading operation can be

applied iteratively to a series of orthologous sequences to obtain an

ARG of size n from sequence data alone. This method works by

randomly choosing one sequence and constructing for it a trivial

ARG G1 (i.e. every local tree is a single branch). Additional

sequences are then threaded into the ARG, one at a time, until an

ARG Gn of n sequences has been obtained. Notice that an ARG

derived in this manner is not a valid sample from the posterior

distribution, because each successive Gk (for k[f2, . . . , n{1g) is

sampled conditional on only D1:k (the first k sequences).

Nevertheless, the sequential sampling algorithm is an efficient

heuristic method for obtaining an initial ARG, which can

subsequently be improved by other methods. If desired, this

operation can be applied multiple times, possibly with various

permutations of the sequences, to obtain multiple initializations of

an MCMC sampler. Heuristic methods can also be used to choose

a ‘‘smart’’ initial ordering of sequences. For example, one might

begin with one representative of each of several populations, to

first approximate the overall ARG structure, and subsequently add

more representatives of each population.

Gibbs sampling for single sequences. Second, the thread-

ing operation can serve as the basis of a Gibbs sampler for full

ARGs. Starting with an initial ARG of n sequences, individual

sequences can be removed, randomly or in round-robin fashion,

and rethreaded. Since the threading procedure samples from the

conditional distribution P(GnDGn{1, Dn,H), this produces a valid

Gibbs sampler for the ARG up to the assumptions of the DSMC.

The ergodicity of the Markov chain follows, essentially, from the

fact that any tree is reachable from any other by a finite sequence

of branch removals and additions (see Text S1 for details).

The main limitation of this method is that it leads to poor

mixing when the number of sequences grows large. The essential

problem is that rethreading a single sequence is equivalent to

resampling the placement of external branches in the local trees, so

this method is highly inefficient at rearranging the ‘‘deep

structure’’ (internal branches) of the ARG. Furthermore, this

Figure 2. The ‘‘threading’’ operation. The threading operation adds an nth sequence to an ARG of n{1 sequences under a discretized version of
the SMC (the DSMC) that requires all coalescence and recombination events to occur precisely at pre-defined time points, s0, . . . sK (horizontal

dashed lines). In this example, the fourth sequence has been removed from ARG G4 from Figure 1, leaving a tree with n{1~3 leaves at each position
i (Tn{1

i ; shown in black). The fourth sequence (shown in red) is re-threaded through the remaining portion of the ARG by a two-step process that first

samples a coalescence point yi for this sequence at each Tn{1
i (dark blue points), thereby defining a new tree Tn

i , and second, samples a
recombination point zi to reconcile each adjacent pair of trees, (Tn

i{1,Tn
i ) (light blue points). For simplicity, only the distinct local trees for the four

nonrecombining segments (after threading) are shown. The gray box highlights the pair of trees immediately flanking the breakpoint b3 . Notice that
the first recombination from Figure 1 is retained (dark gray nodes and dashed line in left-most tree). In general, new recombinations are prohibited at
the locations of ‘‘given’’ recombinations Rn{1 (see text). Note that it is possible for the attachment point of the nth sequence in the local trees to
move due to old recombinations as well as new ones (not shown in this example).
doi:10.1371/journal.pgen.1004342.g002
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mixing problem becomes progressively worse as n grows larger.

Indeed, as n approaches infinity, the single-sequence threading

operation reduces to a procedure that selects a sequences of short

genealogy ‘‘tips’’ leading to other sequences in the data set, leaving

all other aspects of the ARG unchanged; in effect, it approaches

the ‘‘copying’’ model of Li and Stephens [43]. As a result, an

alternative strategy for ARG sampling is needed for large numbers

of sequences.

Subtree sampling. The third sampling strategy addresses the

mixing limitations of the single-sequence Gibbs sampler by

generalizing the threading operation to accommodate not only

individual sequences but subtrees with arbitrary numbers of leaves.

As a result, internal branches in the local trees can be resampled

and the full ARG can be perturbed, including the deep branches

near the roots of the local trees.

In principle, one could address the subtree threading problem

by arbitrarily selecting an internal branch for each nonrecombin-

ing segment of the ARG and resampling its attachment point to

the remainder of the tree, by essentially the same procedure used

for the reattachment of external branches in single-sequence

threading. The problem is that, because the local trees change

along the sequence, it is impossible in general to select a sequence

of internal branches whose subtrees are maintained across the

entire ARG (this is possible only for external branches).

Furthermore, if a poor sequence of internal branches is selected,

the attachment points at both ends of each segment will be

constrained by the flanking local trees, creating a strong tendency

to resample the original attachment points, which would result in

poor mixing of the sampler.

To address this problem, we devised a novel method for

selecting sequences of subtrees guaranteed to have good continuity

properties. Once such a sequence is selected, the subtree threading

operation can be accomplished efficiently using the stochastic

traceback algorithm, in a similar manner as with single sequences.

Our algorithm for selecting sequences of internal branches is fairly

technical in nature and a detailed description is left for Text S1.

Briefly, to select sequences of subtrees, we use a data structure

called a branch graph, which traces the shared ancestry among

branches across genomic positions. Using dynamic programming,

we are able to identify paths through the branch graph that

correspond to sequences of internal branches with good continuity

properties. After a sequence of internal branches is identified, the

selected branch is removed from each local tree, splitting it into a

main tree and a subtree. A new branch is then added above the

root of every subtree and allowed to re-coalesce with the

corresponding main tree in a manner consistent with the DSMC.

One important limitation of the algorithm is worth noting. As in

the single-sequence case, the stochastic traceback algorithm

samples from the desired conditional distribution over subtree

threadings. However, since the number of ways of removing

internal branches depends on the current structure of the ARG,

the Hastings ratio is not equal to one in this case, and a more

general Metropolis-Hastings algorithm (with rejection of some

proposed threadings) is required (see Text S1 for details). In

practice, the acceptance rates for proposed threadings are fairly

high (,40% for typical human data), and despite this limitation,

Metropolis-Hastings subtree threading considerably improves the

mixing properties of the Gibbs sampler for moderately large values

of n (see below).

ARGweaver Program and Visualization
We implemented these sampling strategies in a computer

program called ARGweaver, that ‘‘weaves’’ together an ARG by

repeated applications of the threading operation. The program has

subroutines for threading of both individual sequences and

subtrees. Options allow it to be run as a Gibbs sampler with

single-sequence threading or a general Metropolis-Hastings

sampler with subtree threading. In either case, sequential sampling

is used to obtain an initial ARG. Options to the program specify

the number of sampling iterations and the frequency with which

samples are recorded. The program is written in a combination of

C++ and Python and is reasonably well optimized. For example, it

requires about 1 second to sample a threading of a single 1 Mb

sequence in an ARG of 20 sequences with 20 time steps. Our

Figure 3. Graphical models for Discretized Sequentially
Markov Coalescent (DSMC) models. (A) Full DSMC model for n
samples with local trees, Tn~(Tn

1 , . . . Tn
L), recombinations,

Rn~(Rn
1, . . . Rn

L), and alignment columns, Dn~(Dn
1, . . . Dn

L). Together,
Tn and Rn define an ancestral recombination graph, Gn . Solid circles
indicate observed variables and empty circles indicate latent variables.
Arrows indicate direct dependencies between variables and correspond
to conditional probability distributions described in the text. Notice that
the Rn

i variables can be integrated out of this model, leading to the
conventional graph topology for a hidden Markov model. (B) The same
model as in (A), but now partitioning the latent variables into
components that describe the history of the first n{1 sequences

(Tn{1 and Rn{1) and components specific to the nth sequence

(Y~(y1, . . . ,yL) and Z~(z1, . . . ,zL)). The Tn{1 and Rn{1 variables are
represented by solid circles because they are now ‘‘clamped’’ at specific
values. A sample of (Y ,Z) represents a threading of the nth sequence
through the ARG. (C) Reduced model after elimination of Z by
integration, enabling efficient sampling of coalescent threadings Y .
This is the model used by the first step in our two-step sampling
approach. In the second step, the Z variables are sampled conditional
on Y , separately for each zi . In this model, the grouped nodes have
complex joint dependencies, leading to a heterogeneous state space
and normalization structure, but the linear conditional independence
structure of an HMM is retained.
doi:10.1371/journal.pgen.1004342.g003
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source code is freely available via GitHub (https://github.com/

mdrasmus/argweaver).

To summarize and visualize samples from the posterior

distribution over ARGs, we use two main strategies. First, we

summarize the sampled ARGs in terms of the time to most recent

common ancestor (TMRCA) and total branch length at each

position along the genome. We also consider the estimated age of

the derived alleles at polymorphic sites, which we obtain by

mapping the mutation to a branch in the local tree and calculating

the average time for that branch (see Methods). We compute

posterior mean and 95% credible intervals for each of these

statistics per genomic position, and create genome browser tracks

that allow these values to be visualized together with other

genomic annotations.

Second, we developed a novel visualization device for ARGs

called a ‘‘leaf trace.’’ A leaf trace contains a line for each haploid

sequence in an analyzed data set. These lines are ordered

according to the local genealogy at each position in the genome,

and the spacing between adjacent lines is proportional to their

TMRCAs (Figure S2). The lines are parallel in nonrecombining

segments of the genome, and change in order or spacing where

recombinations occur. As a result, several features of interest are

immediately evident from a leaf trace. For example, recombina-

tion hot spots show up as regions with dense clusters of vertical

lines, whereas recombination cold spots are indicated by long

blocks of parallel lines.

Simulation Study
Effects of discretization and convergence of

sampler. Before turning to inference, we performed a series

of preliminary experiments to verify that our discretization strategy

allowed for an adequate fit to the data and that ARGweaver

converged to a plausible posterior distribution for realistic

simulated data sets. Briefly, we found that the DSMC produces

similar numbers of recombination counts and segregating sites as

the coalescent-with-recombination and SMC, when generating

data under various recombination rates and effective population

sizes (see Text S1 and Supplementary Figure S1). With small

numbers of sequences, the Gibbs sampler based on the single-

sequence threading operation appeared to converge rapidly,

according to both the log likelihood of the sampled ARG and

the inferred numbers of recombination events. When the number

of sequences grew larger than about 6–8 (depending on the specific

details of the simulation), the Gibbs sampling strategy was no

longer adequate. However, the subtree threading operation and

Metropolis-Hastings sampler appeared to address this problem

effectively, allowing the number of sequences to be pushed to 20 or

more. With 20 sequences 1 Mb in length, the sampler converges

within about 500 sampling iterations, which takes about 20 min-

utes on a typical desktop computer (Supplementary Figure S3).

Recovery of global ARG features. Next, we systematically

assessed the ability of ARGweaver to recover several features of

interest from simulated ARGs over a range of plausible ratios of

mutation to recombination rates (see Methods for simulation

parameters). In these experiments, we considered three ‘‘global’’

features of the ARG: (i) the log joint probability of the ARG and

the data (log of equation 2), (ii) the total number of recombina-

tions, and (iii) the total branch length of the ARG. We define the

total branch length of the ARG to be the sum of the total branch

lengths of the local trees at all sites (in generations), a quantity

proportional to the expected number of mutations in the history of

the sample. We applied ARGweaver to each simulated data set with

500 burn-in iterations, followed by 1000 sampling iterations, with

every tenth sample retained (100 samples total).

We found that ARGweaver was able to recover the features of

interest with fairly high accuracy at all parameter settings

(Figure 4A and Supplementary Figure S4). In addition, the

variance of our estimates is generally fairly low, but does show a

clear reduction as m=r increases from 1 to 6, corresponding to an

increase in the phylogenetic information per nonrecombining

segment. Most current estimates of average rates would place the

true value of m=r for human populations between 1 and 2 [55–57],

but the concentration of recombination events in hot spots implies

that the ratio should be considerably more favorable for our

methods across most of the genome. Notably, we do observe a

slight tendency to under-estimate the number of recombinations,

particularly at low values of m=r. This underestimation is paired

with an over-estimation of the joint probability (left column),

suggesting that it reflects model misspecification of the DSMC. It is

possible that this bias could be improved by the use of the SMC’

rather than the SMC, or by a finer-grained discretization scheme

(see Discussion).

Recovery of local ARG features. An advantage of explicitly

sampling full ARGs is that it enables inferences about local

features of the ARG that are not directly determined by model

parameters. Using the same simulated data and inference

procedure as in the previous section, we evaluated the perfor-

mance of ARGweaver in estimating three representative quantities

along the genome sequence: (i) time to most recent common

ancestry (TMRCA), (ii) recombination rate, and (iii) allele age. We

estimated each quantity using an approximate posterior expected

value, computed by averaging across sampled ARGs. With 20

sequences, we found that ARGweaver was able to recover the

TMRCA with fairly high accuracy and resolution (Figure 4B). The

quality of the estimates degrades somewhat at lower values of the

ratio m=r but remains quite good even with m=r~1 (Supplemen-

tary Figure S5). We found that our power for recombination rates

was weak with only 20 sequences, but with 100 sequences the

reconstructed ARGs clearly displayed elevated rates of recombi-

nation in simulated hotspots compared with the flanking regions

(Supplementary Figure S6). Estimates of allele ages appeared to be

unbiased, with good concordance between true and estimated

values, although the variance in the estimates was fairly high

(Supplementary Figure S7, left column). Notably, the ARG-based

estimates of allele age appear to be considerably better than

estimates based on allele frequency alone (Supplementary Figure

S7, right column). Together, these results suggest that, even with

modest numbers of sequences, the distributions of ARGs inferred

by our methods may be informative about loci under natural

selection, local recombination rates, and other local features of

evolutionary history.

Accuracy of local tree topologies. In our next experiment,

we evaluated the accuracy of ARGweaver in inferring the topology

of the local trees, again using the same simulated data. The local

trees are a more complex feature of the ARG but are of particular

interest for applications such as genotype imputation and

association mapping. For comparison, we also inferred local trees

using the heuristic Margarita program [34], which is, to our

knowledge, the only other published ARG-inference method that

can be applied at this scale. In addition, we applied an

unpublished method, called treesim (http://niallcardin.com/

treesim/index.html), that samples genealogies using heuristic

extensions of the Monte Carlo methods of Fearnhead and

Donnelly [22]. To compare these programs, we identified 100

evenly spaced locations in our simulated data sets, and extracted

the local trees reconstructed by all three methods at these

positions. We found that ARGweaver produced more accurate local

tree topologies than both Margarita and treesim across most values of
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m=r, except for the case of m=r~1, where treesim performed

slightly better (Supplementary Figure S8). The improvements were

most pronounced at high m=r values, where topological informa-

tion is greatest. In addition, the absolute accuracy of the trees

inferred by ARGweaver was fairly high, given the sparseness of

informative sites in these data sets. For example, at m=r~6, more

than 80% of predicted branches were correct and Maximum

Agreement Subtree (MAST) percentages approached 75%, and

even in the challenging case of m=r~1, over 60% of branches

were correct and MAST percentages exceeded 50%. These results

indicate that the sampler is effectively pooling information from

many sites across the multiple alignment in making inferences

about local tree topologies.

Finally, we evaluated the accuracy of ARGweaver’s assessment of

the uncertainty about the local trees given the data. We grouped

individual branches into bins according to their estimated

posterior probabilities (i.e., the fraction of sampled local trees in

which each branch is found), and compared these values with the

relative frequencies with which the same branches were observed

in the true trees. We found that the predicted and actual

probabilities of correctness were closely correlated, indicating that

ARGweaver is accurately measuring the uncertainty associated with

the local trees (Supplementary Figure S9). By contrast, the

heuristic Margarita sampler shows a clear tendency to overestimate

the confidence associated with branches in the local trees, often by

10–20%. This comparison is not entirely fair, because the authors

of Margarita do not claim that it samples from the posterior

distribution, but it nevertheless highlights an important advantage

of the Bayesian approach. Notably, the unpublished treesim

program performed remarkably well on this test.

Analysis of Real Data
Having demonstrated that ARGweaver was able to recover many

features of simulated ARGs with reasonable accuracy, we turned

to an analysis of real human genome sequences. For this analysis

we chose to focus on sequences for 54 unrelated individuals from

the ‘‘69 genomes’’ data set from Complete Genomics (http://

www.completegenomics.com/public-data/69-Genomes) [58].

The 54 genome sequences were computationally phased using

SHAPEIT v2 [59] and were filtered in various ways to minimize

the influence from alignment and genotype-calling errors. They

were partitioned into ,2-Mb blocks and ARGweaver was applied to

these blocks in parallel using the Extreme Science and Engineering

Discovery Environment (XSEDE). For this analysis, we assumed

K~19, sK~1,000,000 generations, 4Nm~5:8|10{4, and

m~1:26|10{8, implying N~11,534. We allowed for variation

across loci in mutation and recombination rates. For each ,2-Mb

block, we collected samples for 2,000 iterations of the sampler and

retained every tenth sample, after an appropriate burn-in (see

Methods for complete details). The entire procedure took

,36 hours for each of the 1,376 2-Mb blocks, or 5.7 CPU-years

of total compute time. The sampled ARGs were summarized by

UCSC Genome Browser tracks describing site-specific times to

most recent common ancestry (TMRCA), total branch length,

allele ages, leaf traces, and other features across the human

genome. These tracks are publicly available from our local mirror

Figure 4. Simulation results. (A) Recovery of global features of simulated ARGs from sequence data. This plot is based on sets of 20 1-Mb
sequences generated under our standard simulation parameters (see Methods) with m=r~2 (see Supplementary Figure 10 for additional results).
From left to right are shown true (x-axis) versus inferred (y-axis) values of the log joint probability (the logarithm of equation 2), the total number of
recombinations, and the total branch length of the ARG. Each data point in each plot represents one of 100 simulated data sets. In the vertical
dimension, circles represent averages across 100 sampled ARGs based on the corresponding data sets, sampled at intervals of 10 after a burn-in of
200 iterations, and error bars represent the interval between the 2.5 and 97.5 percentiles. In the second and third plots, circles are interpretable as
posterior expected values and error bars as 95% Bayesian credible intervals. (B) Posterior mean TMRCA (dark red line, with 95% credible intervals in
light red) versus true TMRCA (black line) along a simulated genomic segment of 1 Mb. This plot is based on a single representative data set of 20 1-
Mb sequences generated under our standard simulation parameters with m=r~6 (see Supplementary Figure S5 for additional results).
doi:10.1371/journal.pgen.1004342.g004
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of the UCSC Genome Browser (http://genome-mirror.bscb.

cornell.edu, assembly hg19).

Distortions in the ARG due to natural selection. While

our prior distribution over ARGs is based on the neutral

coalescent, we were interested in exploring whether natural

selection produces a sufficiently strong signal in the data to create

detectable distortions in the ARG near functional elements. We

began by examining the estimated posterior expected values of the

TMRCA around known protein-coding genes, focusing on

fourfold degenerate (4d) sites within coding exons and noncoding

sites flanking exons. For comparison with our ARG-based

measures, we also computed a simple measure of nucleotide

diversity, p. Both p and the ARG-based TMRCA behave in a

qualitatively similar manner near genes, achieving minimal values

in coding exons and gradually increasing with distance from exon

boundaries (Figure 5A). These observations are consistent with

several recent studies indicating reduced neutral diversity near

both coding and noncoding functional elements, which has been

attributed to indirect effects from selection at linked sites [60–64].

However, it has been difficult to distinguish between two

alternative modes of selection both predicted to have similar

influences on patterns of neutral diversity: ‘‘background selection’’

(BGS) associated with negative or purifying selection at linked sites

[65–68], and ‘‘hitchhiking’’ (HH) (selective sweeps) associated with

linked mutations under positive selection [69]. In principle, explicit

ARG inference could help to resolve this controversy, because

BGS and HH lead to different predictions for the structure of

genealogies (e.g., [70,71]).

To examine these questions further, we computed the same

statistics for 255 putative partial selective sweeps identified in CEU

populations and 271 partial sweeps identified in YRI populations

based on the integrated extended haplotype homozygosity statistic

(iHS) [72]. As expected, the sweep regions were broadly similar to

the protein-coding genes in terms of nucleotide diversity p
(Figure 5B). However, unlike the protein-coding genes, the sweep

regions displayed no clear depression in TMRCA. One possible

way of understanding this observation is that, while sweeps tend to

be enriched overall for recent coalescence events (as indicated by

the reductions in p), the oldest coalescence events are relatively

unaffected by selective sweeps, perhaps because some lineages tend

to ‘‘escape’’ each sweep, leading to near-neutral patterns of

coalescence near the roots of genealogies (where the contribution

to the TMRCA is greatest). This may be particularly true for the

partial sweeps identified by the iHS method, but a similar

phenomenon should occur in flanking regions of the causal

mutations for complete sweeps. BGS, by contrast, is expected to

affect both the total branch length and TMRCA approximately

equally, by effectively reducing the time scale of the coalescence

process, but to have a minimal influence on the relative intervals

between coalescence events.

In an attempt to distinguish further between BGS and HH, we

introduced a statistic called the relative TMRCA halflife (RTH),

defined as the ratio between the time to most recent common

ancestry for the first 50% of chromosomes and the full TMRCA.

The RTH captures the degree to which coalescence events are

skewed toward the recent past, in a manner that does not depend

on the overall rate of coalescence. Thus, the RTH should be

relatively insensitive to BGS, but sensitive to HH if, as proposed

above, sweeps tend to affect many but not all lineages (see

Supplementary Figure S10). In the European populations, the

statistic showed a pronounced valley near selective sweeps

(Figure 5B), as expected, but it was much more constant across

genic regions (Figure 5A). Its behavior was similar in the African

populations, except that it showed somewhat more variability near

genes, yet in an opposite pattern from the sweeps (Supplementary

Figure S11). Overall, these results suggest that, while the total rate

of coalescence differs substantially across genic regions, the relative

depths of middle and extreme coalescence events do not, on

average, consistent with the predictions of a model in which BGS

dominates in genes [60,62,64]. The sharply contrasting patterns

for the iHS-identified sweeps suggest that partial sweeps of this

kind make at most a minor contribution to the reduced diversity

near protein-coding exons. Nevertheless, these observations do not

rule out the possibility that alternative modes of hitchhiking for

which iHS has low power—such as recurrent hard or soft

sweeps—might make a non-negligible contribution to patterns of

variation near human protein-coding genes (see Discussion).

Genomic regions with extremely ancient most recent

common ancestry. The previous section showed that genomic

regions with reduced TMRCAs are often associated with purifying

selection. To see whether the opposite signal was also of interest,

we computed the posterior expected TMRCA in 10-kb blocks

across the human genome and examined the regions displaying

the oldest shared ancestry. Not surprisingly, four of the top twenty

10-kb blocks by TMRCA fall in the human leukocyte antigen

(HLA) region on chromosome 6 (see Table 2). It has been known

for decades that the HLA region exhibits extraordinary levels of

genetic diversity, which is believed to be maintained by some type

of balancing selection (overdominance or frequency-dependent

selection) associated with the immunity-related functions of the

HLA system [73–75]. The four HLA-related high-TMRCA blocks

include three regions near HLA-F and one region between HLA-A

and HLA-J (Supplementary Figure S12). All four high-TMRCA

regions exhibit more than 12 polymorphisms per kilobase of

unfiltered sequence, 8–10 times the expected neutral rate after

normalizing for local mutation rates (as detailed in Table 2; see

also Supplementary Figure S13). The estimated TMRCAs for

these regions range from ,340,000–380,000 generations, or

,8.5–9.5 My (assuming 25-year generations).

Among these high-TMRCA blocks were two additional regions

that displayed extraordinary levels of mutation-rate-normalized

nucleotide diversity. The first of these, in a gene desert near the

telomere of the long arm of chromosome 4, exhibits the deepest

expected TMRCA in the genome, at .600,000 generations

(15 My), and has .30 times the neutral polymorphism rate

(Table 2). The second region is the PRIM2 gene on chromosome

6, which contributes the 4th and 7th highest TMRCA blocks in

the genome, exhibiting polymorphism rates 28.0 and 12.8 times

the neutral expectation, respectively. Both of these regions were

identified as extreme outliers in a recent study of coincident SNPs

in humans and chimpanzees, and it was argued that the PRIM2

gene was a likely target of balancing selection [76]. On closer

inspection, however, we found that both regions were flagged by

Complete Genomics as having ‘‘hypervariable’’ or ‘‘invariant’’

read depth across individuals, suggesting that the elevated SNP

rates in our data are likely artifacts of copy number variation

(CNV) at loci unduplicated in the reference genome. (Leffler et al.

recently reached a similar conclusion about PRIM2 [77].) Despite

that these flags were associated with only ,5% of genomic

positions, they indicated that five of our top six regions were likely

CNVs (Table 2). Thus, for all subsequent analyses reported in this

paper and for our publicly available browser tracks, we filtered out

all regions labeled as invariant or hypervariable.

Once these extreme outliers were excluded, several loci of

interest remained. In addition to the four HLA loci, these included

(#5 in Table 2) an apparent cis-regulatory region downstream of

the KCNE4 gene, which encodes a potassium voltage-gated

channel (Supplementary Figure S14); (#9) an intronic interval in
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BCAR3, a gene involved in the development of anti-estrogen

resistance in breast cancer (Supplementary Figure S15); (#16) an

apparent regulatory region upstream of TULP4, a tubby-like

protein that may be involved in ubiquitination and proteasomal

degradation with a possible association with cleft lip (Supplemen-

tary Figure S16); and (#18) an intronic region in CRHR1, which

encodes a GPCR that binds corticotropin releasing hormones, has

roles in in stress, reproduction, immunity, and obesity, and is

Figure 5. Measures of genetic variation near protein-coding genes and partial selective sweeps. Shown (from top to bottom) are
nucleotide diversity (p), time to most recent common ancestry (TMRCA), and relative TMRCA halflife (RTH) for the 13 individuals (26 haploid genomes)
of European descent (CEU and TSI populations) in the Complete Genomics data set (similar plots for African population are shown in Supplementary
Figure S11). Nucleotide diversity p was computed as the average rate of nucleotide differences per site across all pairs of chromosomes, whereas
sitewise values of the TMRCA and RTH were computed by averaging over local trees sampled by ARGweaver. (A) Estimates for 17,845 protein-coding
genes from the Consensus Coding Sequence (CCDS) track in the UCSC Genome Browser (hg19). Estimates for noncoding regions were computed by
averaging in a sliding window of size 300 bp then averaging across genes. Estimates for coding exons were computed by first averaging over
fourfold degenerate (4d) sites of each exonic type (first, middle, last), then averaging across genes (see Methods). Only 4d sites were considered to
focus on the influence of selection from linked sites rather than direct selection. Nevertheless, the decreased values for the exons suggest some
influence from direct selection. The differences between exons and flanking sites may also be influenced by windowing in the noncoding regions.
‘‘First exon’’ is taken to begin at the annotated start codon and ‘‘last exon’’ to end at the stop codon, so that both exclude untranslated regions. The
TMRCA is measured in thousands of generations. RTH is ratio of the time required for the first 50% of lineages to find a most recent common ancestor
to the full TMRCA (see Supplementary Figure S10). Error bars (dashed lines for noncoding regions) indicate 95% confidence intervals as estimated by
bootstrapping over regions. (B) Similar plots for 255 100-kb regions predicted to have undergone partial selective sweeps in the CEU population
based on the iHS statistic [72]. In this case, all measures are computed in a sliding window of 10,000 bases. Notice that both protein-coding genes
and putative selective sweeps display substantial reductions in nucleotide diversity, but the genes show a much more prominent reduction in
TMRCA, whereas the sweeps show a much more prominent reduction in RTH. These signatures are consistent with a dominant influence from
background selection rather than hitchhiking in protein-coding genes (see text).
doi:10.1371/journal.pgen.1004342.g005
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associated with alcohol abuse, asthma, and depression. Notably, all

of these are predominantly noncoding regions that include

multiple ChIP-seq-supported transcription factor binding sites.

The estimated TMRCAs of these regions range from 335,000–

450,000 generations (8.4–11.3 My), suggesting genetic variation in

these loci considerably predates the human/chimpanzee diver-

gence.

Segregating haplotypes shared between humans and

chimpanzees. To explore the connection between extreme

TMRCAs and balancing selection further, we examined 125 loci

recently identified as having segregating haplotypes that are shared

between humans and chimpanzees [77]. These loci are expected

to be enriched for ancient polymorphisms maintained by

balancing selection, although some may reflect independent

occurrences of the same mutation in both species. We compared

these putative balancing selection loci with neutral sequences

having the same length distribution (see Methods), and found that

their ARGweaver-estimated TMRCAs were clearly shifted toward

higher values, with a mean value nearly twice as large as that of

the neutral sequences (Supplementary Figure S17). In addition,

the putative balancing selection loci that do not contain

polymorphisms in CpG dinucleotides—which are less likely to

have experienced parallel mutations—had slightly higher

TMRCAs than the group as a whole.

If these loci are sorted by their estimated TMRCAs, several loci

that were highlighted by Leffler et al. [77] for having more than

two pairs of shared SNPs in high LD appear near the top of the list

(Table 3). For example, the haplotype between the FREM3 and

GYPE genes (#11 in Table 3; Supplementary Figure S18) contains

shared SNPs in almost perfect LD with several expression

quantitative trait loci (eQTLs) for GYPE, a close paralog of a

gene (GYPA) that encodes a receptor for Plasmodium falciparum and

may be under balancing selection. Another haplotype (#3)

contains shared SNPs in significant LD with an eQTL for MTRR,

a gene implicated in the regulation of folate metabolism, including

one SNP that is also segregating in gorillas. In a third case (#18),

the shared SNPs occur in a likely enhancer in an intron of IGFBP7,

a gene that plays a role in innate immunity, among other

functions. Another example is a locus near the ST3GAL1 gene (#7)

that contains only one pair of shared SNPs but was suggested by a

phylogenetic analysis to have an ancient origin [77]. Notably, all of

these shared haplotypes fall outside of coding regions and several

show signs of regulatory activity based on functional genomic data

[77]. Their expected TMRCAs range from roughly 150,000 to

250,000 generations, or 3.8–6.3 My. Thus, the ARGweaver

estimates of age are reasonably consistent with the hypothesis

that these hapolotypes predate the human/chimpanzee divergence

(estimated at 3.7–6.6 Mya [57]), an observation that is especially

notable given that our analysis does not make direct use of data

from chimpanzees.

By contrast, the loci near the bottom of the list (with the shortest

TMRCAs) appear to be much less convincing. For example, the

bottom 20 have expected ages of only 25,000–50,000 generations

(0.65–1.3 My), suggesting that they actually post-date the human/

chimpanzee divergence by millions of years. In addition, many of

these regions appear hundreds of kilobases from the nearest gene,

and they typically do not overlap regions with strong functional or

comparative genomic evidence of regulatory potential. Indeed, if

our ARG-based estimates of the TMRCA are interpreted literally,

a majority of the 125 segregating haplotypes may post-date the

human/chimpanzee divergence, which current estimates would

place at $150,000 generations ago (see Supplementary Figure

S17). This observation is in general agreement with rough

calculations by Leffler et al. suggesting that the false discovery

rate for ancient balancing selection in this set could be as high as

75% [77]. Thus, it appears that our ARG-based methods may be

useful in distinguishing true ancestral polymorphisms from shared

haplotypes that occur by chance due to homoplasy.

Natural selection and allele age. Next we examined the

ARG-based expected ages of derived alleles at polymorphic sites in

various annotation classes. Classical theory predicts that both

deleterious and advantageous alleles will not only have skewed

population frequencies but will also tend to be younger than

neutral alleles at the same frequency, because directional selection

will tend to accelerate a new mutation’s path to fixation or loss

[78]. This idea has recently been used to characterize selection in

the human genome based on a haplotype-based summary statistic

that serves as a proxy for allele age [79]. We computed ARG-

based estimates of allele age in putatively neutral regions (Neut),

fourfold degenerate sites in coding regions (4d), conserved

noncoding sequences (CNS), missense coding mutations predicted

by PolyPhen-2 to be ‘‘benign’’ (PPh:Benign), ‘‘possibly damaging’’

(PPh:PosDam), or ‘‘probably damaging’’ (PPh:ProbDam), and

coding or noncoding mutations classified by the ClinVar database

(http://www.ncbi.nlm.nih.gov/clinvar) as ‘‘nonpathogenic’’ (cate-

gories 1–3; CV:NonPath) or ‘‘pathogenic’’ (categories 4 & 5;

CV:Path) based on direct supporting evidence of phenotypic

effects. We found, indeed, that the Neut mutations were

significantly older, on average, than all other classes (Figure 6A).

In addition, among the missense coding mutations, PPh:Benign

mutations were the oldest, PPh:PosDam were significantly

younger, and PPh:ProbDam mutations were the youngest.

Similarly, mutations in the CV:NonPath class were significantly

older than those in the CV:Path class. Interestingly, the 4d

mutations showed substantially lower average ages (by .30%)

than the Neut mutations. We attribute this reduction primarily to

the effects of selection from linked sites (see [60]), although direct

selection from mRNA secondary structure and exonic regulatory

elements may also contribute to it.

In part, these differences in age simply reflect differences in the

site frequency spectrum (SFS) across classes of mutations. For

example, missense mutations are well known to be enriched for

low-frequency derived alleles, which will tend to be younger, on

average, than higher-frequency derived alleles. To account for the

influence of allele frequency, we further grouped the sites in each

annotation class by derived allele frequency and compared the

average allele ages within each group (Figure 6B). As expected, the

estimated ages increase with the derived allele frequency across all

annotation classes. In addition, within each class we continue to

observe approximately the expected rank-order in allele ages, with

Neutral mutations being the oldest, 4d, PPh:Benign, CNS, and

CV:NonPath mutations coming next, followed by PPh:PosDam,

PPh:ProbDam, and CV:Path mutations. This analysis demon-

strates that ARGweaver is able to obtain information about natural

selection from allele ages beyond what can be obtained from the

SFS alone.

Another way of viewing these results is to consider the reduction

in allele age relative to the neutral expectation within each

frequency group, across annotation classes (Supplementary Figure

S19). As expected, these reductions are larger at higher allele

frequencies, where sojourn times will tend to be longer. However,

from this representation it is also clear that the reductions in age

increase with frequency much more rapidly for the mutations

under strong, direct selection than for the mutations at which

selection from linked sites is expected to dominate. For example, at

very low derived allele frequencies (singletons), the reduction in

age of 4d mutations is roughly equal to that at PPh:PosDam

mutations, whereas at higher derived allele frequencies the

Genome-Wide ARG Inference

PLOS Genetics | www.plosgenetics.org 13 May 2014 | Volume 10 | Issue 5 | e1004342

http://www.ncbi.nlm.nih.gov/clinvar


T
a

b
le

3
.

T
o

p
tw

e
n

ty
re

g
io

n
s

o
f

sh
ar

e
d

h
u

m
an

/c
h

im
p

an
ze

e
h

ap
lo

ty
p

e
s

b
y

e
st

im
at

e
d

T
M

R
C

A
.

#
C

h
ra

S
ta

rt
E

n
d

T
M

R
C

A
b

P
o

ly
/k

b
c

N
p

o
ly

d
C

N
V

e
C

o
m

m
e

n
ts

1
ch

r7
4

7
7

9
9

9
7

9
4

7
8

0
3

4
1

5
3

0
7

5
9

0
1

0
.5

2
.9

Fi
rs

t
e

xo
n

/i
n

tr
o

n
o

f
LI

N
C

00
52

5

2
ch

r4
5

6
1

4
4

1
6

4
5

6
1

4
8

4
6

7
2

5
6

0
5

1
1

4
.4

4
.0

U
p

st
re

am
o

f
SR

D
5A

3

3
ch

r5
8

0
2

2
8

2
9

8
0

2
4

4
7

6
2

4
9

5
5

3
9

.3
2

.0
D

o
w

n
st

re
am

o
f

M
TR

R

4
ch

r3
1

4
3

6
8

4
5

4
7

1
4

3
6

8
8

5
3

5
2

3
5

5
9

8
9

.8
2

.9
U

p
st

re
am

o
f

C
3o

rf
58

5
ch

r9
9

9
5

4
6

0
8

7
9

9
5

5
0

9
3

4
2

3
3

4
9

2
8

.6
2

.6
U

p
st

re
am

o
f

Z
N

F5
10

6
ch

r1
8

5
8

4
3

7
3

7
9

5
8

4
3

9
4

1
0

2
2

8
7

8
2

8
.5

1
.8

D
is

ta
lly

u
p

st
re

am
o

f
M

C
4R

7
ch

r8
1

3
4

4
0

4
3

2
7

1
3

4
4

0
5

5
1

2
2

2
7

5
5

5
1

6
.4

3
.7

D
o

w
n

st
re

am
o

f
ST

3G
A

L1

8
ch

r2
1

2
2

0
4

5
4

8
4

2
2

0
4

8
2

5
2

2
1

5
7

1
8

1
2

.2
2

.5
D

o
w

n
st

re
am

o
f

LI
N

C
00

32
0

9
ch

r7
4

5
2

5
2

7
4

5
4

5
2

5
7

5
2

7
2

0
1

5
2

2
1

3
.5

4
.3

D
o

w
n

st
re

am
o

f
R

A
M

P
3

1
0

ch
r2

2
4

1
1

2
1

5
7

8
2

4
1

1
2

4
3

4
5

2
0

0
3

2
1

1
6

.1
3

.0
!

U
p

st
re

am
o

f
O

TO
S

1
1

ch
r4

1
4

4
6

5
4

9
0

7
1

4
4

6
6

2
5

5
4

1
8

2
3

4
8

1
1

.9
2

.5
U

p
st

re
am

o
f

FR
EM

3

1
2

ch
r3

3
6

2
0

3
9

6
4

3
6

2
0

5
0

3
6

1
7

3
6

5
5

1
5

.5
2

.9
U

p
st

re
am

o
f

ST
A

C

1
3

ch
r2

1
0

1
2

7
6

9
4

4
1

0
1

2
7

8
5

3
7

1
7

3
4

4
8

1
4

.0
2

.9
D

o
w

n
st

re
am

o
f

P
D

C
L3

1
4

ch
r1

1
5

7
7

1
6

0
9

3
1

5
7

7
1

8
0

7
4

1
7

0
5

8
3

1
0

.1
2

.4
Ex

o
n

an
d

in
tr

o
n

s
o

f
FC

R
L2

1
5

ch
r1

4
2

2
3

2
0

9
2

0
2

2
3

2
3

4
7

3
1

5
9

2
5

1
1

3
.8

2
.4

In
tr

o
n

o
f

TC
R

A

1
6

ch
r1

4
8

8
8

0
3

5
3

5
8

8
8

0
5

9
0

9
1

5
5

4
3

1
8

.9
2

.2
U

p
st

re
am

o
f

K
C

N
K

10

1
7

ch
r2

0
5

3
3

7
1

0
3

5
3

4
0

8
6

4
1

4
9

8
1

6
1

1
.1

2
.8

U
p

st
re

am
o

f
P

R
O

K
R

2

1
8

ch
r4

5
7

9
1

9
5

4
9

5
7

9
2

0
5

8
7

1
4

6
6

8
4

1
7

.5
4

.9
In

tr
o

n
o

f
IG

FB
P

7

1
9

ch
r1

4
8

6
1

4
7

0
4

2
8

6
1

4
9

0
6

9
1

4
3

6
0

8
1

0
.1

2
.1

D
o

w
n

st
re

am
o

f
FL

R
T2

2
0

ch
r1

1
8

1
4

8
9

3
4

2
8

1
4

9
2

7
9

3
1

4
3

2
2

2
1

0
.2

1
.8

D
o

w
n

st
re

am
o

f
B

C
04

19
00

a
G

e
n

o
m

ic
co

o
rd

in
at

e
s

in
h

g
1

9
as

se
m

b
ly

.
b

P
o

st
e

ri
o

r
e

xp
e

ct
e

d
T

M
R

C
A

in
g

e
n

e
ra

ti
o

n
s,

av
e

ra
g

e
d

ac
ro

ss
u

n
fi

lt
e

re
d

g
e

n
o

m
ic

p
o

si
ti

o
n

s
in

re
g

io
n

.
c
N

u
m

b
e

r
o

f
p

o
ly

m
o

rp
h

is
m

s
in

C
o

m
p

le
te

G
e

n
o

m
ic

s
d

at
as

e
t

in
re

g
io

n
p

e
r

ki
lo

b
as

e
o

f
u

n
fi

lt
e

re
d

se
q

u
e

n
ce

.
d

N
o

rm
al

iz
e

d
p

o
ly

m
o

rp
h

is
m

ra
te

:n
u

m
b

e
r

o
f

p
o

ly
m

o
rp

h
is

m
s

p
e

r
u

n
fi

lt
e

re
d

ki
lo

b
as

e
d

iv
id

e
d

fi
rs

t
b

y
th

e
lo

ca
lm

u
ta

ti
o

n
ra

te
(a

s
e

st
im

at
e

d
fr

o
m

d
iv

e
rg

e
n

ce
to

n
o

n
h

u
m

an
p

ri
m

at
e

o
u

tg
ro

u
p

g
e

n
o

m
e

s)
th

e
n

b
y

th
e

av
e

ra
g

e
o

f
th

e
sa

m
e

p
o

ly
m

o
rp

h
is

m
/d

iv
e

rg
e

n
ce

ra
ti

o
in

d
e

si
g

n
at

e
d

n
e

u
tr

al
re

g
io

n
s

(s
e

e
M

e
th

o
d

s)
.

T
h

e
re

su
lt

in
g

va
lu

e
ca

n
b

e
in

te
rp

re
te

d
as

a
fo

ld
in

cr
e

as
e

in
th

e
m

u
ta

ti
o

n
-n

o
rm

al
iz

e
d

p
o

ly
m

o
rp

h
is

m
ra

te
co

m
p

ar
e

d
w

it
h

th
e

e
xp

e
ct

at
io

n
u

n
d

e
r

n
e

u
tr

al
it

y.
e
P

o
ss

ib
le

co
p

y
n

u
m

b
e

r
va

ri
an

t
(C

N
V

),
b

as
e

d
o

n
C

o
m

p
le

te
G

e
n

o
m

ic
s

‘‘h
yp

e
rv

ar
ia

b
le

’’
o

r
‘‘i

n
va

ri
an

t’
’l

ab
e

ls
(s

e
e

M
e

th
o

d
s)

.P
o

ly
m

o
rp

h
is

m
ra

te
s

in
th

e
se

re
g

io
n

s
m

ay
b

e
in

fl
at

e
d

.F
e

w
o

f
th

e
se

re
g

io
n

s
w

e
re

id
e

n
ti

fi
e

d
in

th
e

Le
ff

le
r

e
t

al
.

d
at

a
se

t,
p

ro
b

ab
ly

b
e

ca
u

se
th

e
au

th
o

rs
w

e
re

ca
re

fu
l

to
fi

lt
e

r
o

u
t

d
u

p
lic

at
e

d
re

g
io

n
s

fr
o

m
th

e
ir

an
al

ys
is

[7
7

].
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
g

e
n

.1
0

0
4

3
4

2
.t

0
0

3

Genome-Wide ARG Inference

PLOS Genetics | www.plosgenetics.org 14 May 2014 | Volume 10 | Issue 5 | e1004342



damaging mutations exhibit reductions in age 2–3 times larger.

The reason for this observation is probably that the reduction in

age for the nearly neutral sites is largely a consequence of

reductions in the local effective population size due to selection at

linked sites, while the reductions at sites under direct selection are

driven by the influence of selection on sojourn times (see

Supplementary Figure S19 for a detailed discussion). Consistent

with this interpretation, CNS mutations show less reduction in age

than 4d and PPh:Benign mutations at low frequencies, and more

reduction at high frequencies, suggesting that CNS mutations are

influenced less by selection at linked sites and more by direct

selection.

Discussion

Several decades have passed since investigators first worked out

the general statistical characteristics of population samples of

genetic markers in the presence of recombination [21,80–83].

Nevertheless, solutions to the problem of explicitly characterizing

this structure in the general case of multiple markers and multiple

sequences—that is, of making direct inferences about the ancestral

recombination graph (ARG) [19,20]—have been elusive. Recent

investigations have led to important progress on this problem

based on the Sequentially Markov Coalescent (SMC) [17,37–42],

but existing methods are still either restricted to small numbers of

sequences or require severe approximations. In this paper, we

introduce a method that is faithful to the SMC yet has much better

scaling properties than previous methods. These properties

depend on a novel ‘‘threading’’ operation that can be performed

in a highly efficient manner using hidden Markov modeling

techniques. Inference does require the use of Markov chain Monte

Carlo (MCMC) sampling, which has certain costs, but we have

shown that the sampler mixes fairly well and converges rapidly,

particularly if the threading operation is generalized from single

sequences to subtrees. Our methods allow explicit statistical

inference of ARGs on the scale of complete mammalian genomes

for the first time. Furthermore, the sampling of ARGs from their

posterior distribution has the important advantage of allowing

estimation of any ARG-derived quantity, such as times to most

recent common ancestry, allele ages, or regions of identity by

descent.

Despite our different starting point, our methods are similar in

several respects to the conditional sampling distribution (CSD)-

based methods of Song and colleagues [49–52]. Both approaches

consider a conditional distribution for the nth sequence given the

previous n{1 sequences, and in both cases a discretized SMC is

exploited for efficiency of inference. However, the CSD-based

methods consider the marginal distribution of the nth sequence

only given the other n{1 sequences and never explicitly

reconstruct an ARG, while ours considers the joint distribution

of an ARG of size n and the nth sequence, given an ARG of size

n{1 and the previous n{1 sequences. In a sense, we have

Figure 6. Mean allele age as a function of annotation class and derived allele frequency. (A) Estimated age of derived allele in
generations, averaged across polymorphic sites of various annotation classes. Estimates were derived from ARGs sampled by ARGweaver based on
the Complete Genomics data set (see Methods). Error bars represent one standard deviation above and below the mean. Neut = putatively neutral
sites; 4d = fourfold degenerate sites in coding regions; CNS = conserved noncoding sequences identified by phastCons; PPh:{Benign,PosDam,Prob-
Dam} = missense mutations identified by PolyPhen-2 as ‘‘benign’’, ‘‘possibly damaging’’, or ‘‘probably damaging’’, respectively; CV:{NonPath,Path} =
mutations in ‘‘nonpathogenic’’ (categories 1–3) or ‘‘pathogenic’’ (categories 4 & 5) classes in the ClinVar database, respectively. (B) Similar plot with
categories further divided by derived allele frequencies (DAF) in numbers of chromosomes out of 108. Error bars represent 95% confidence intervals,
as assessed by bootstrapping. In categories that combine multiple frequencies (e.g., 4–5, 6–8), a subsampling strategy was used to ensure that the
relative contributions of the different frequencies matched those of the Neut class. Estimates for DAF.20 were excluded due to sparse data. Notice
that ages generally increase with DAF, as expected (see Supplementary Figure S7), but at a considerably reduced rate in categories under strong
selection.
doi:10.1371/journal.pgen.1004342.g006
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employed a ‘‘data augmentation’’ strategy by explicitly represent-

ing full ARGs in our inference procedure. The main cost of this

strategy is that it requires Markov chain Monte Carlo methods for

inference, rather than allowing direct likelihood calculations and

maximum-likelihood parameter estimation. The main benefit is

that it provides an approximate posterior distribution over

complete ARGs and many derived quantities, including times to

most recent common ancestry, allele ages, and distributions of

coalescence times. By contrast, the CSD-based methods provide

information about only those properties of the ARG that are

directly described by the model parameters. We view these two

approaches as complementary and expect that they will have

somewhat different strengths and weaknesses, depending on the

application in question.

Our explicit characterization of genealogies can be exploited to

characterize the influence of natural selection across the genome,

as shown in our analysis of the Complete Genomics data set. In

particular, we see clear evidence of an enrichment for ancient

TMRCAs in regions of known and predicted balancing selection,

reduced TMRCAs near protein-coding genes and selective

sweeps, and reduced allele ages in sites experiencing both direct

selection and selection at closely linked sites. Interestingly, the

genealogical view appears to have the potential to shed light on the

difficult problem of distinguishing between background selection

and hitchhiking. Our initial attempt at addressing this problem

relies on a genealogy-based summary statistics, the relative

TMRCA halflife (RTH), that does appear to distinguish effectively

between protein-coding genes and partial selective sweeps

identified by iHS. However, more work will be needed to

determine how well this approach generalizes to other types of

hitchhiking (e.g., complete sweeps, soft sweeps, recurrent sweeps)

and whether additional genealogical information can be used to

characterize the mode of selection more precisely. Additional work

is also needed to determine whether our ARG-based allele-age

estimator—which is highly informative in bulk statistical compar-

isons but has high variance at individual sites—can be used to

improve functional and evolutionary characterizations of partic-

ular genomic loci. A related challenge is to see whether our

genome-wide ARG samples can be used to improve methods for

association/LD mapping (see [34,84–88]).

In addition to natural selection, our methods for ARG inference

have the potential to shed light on historical demographic

processes, an area of particular interest in the recent literature

[16,17,51,52,89]. To explore the usefulness of ARGweaver in

demography inference, we attempted to infer a population

phylogeny with admixture edges for the 11 human populations

represented in the Complete Genomics data set, based on the

genealogies sampled under our naive (panmictic) prior distribu-

tion. We extracted 2,304 widely spaced loci from our inferred

ARGs, obtained a consensus tree at each locus, and reduced this

tree to a subtree with one randomly selected chromosome for each

of the 11 populations (see Text S1 for details). We then analyzed

these 11-leaf trees with the PhyloNet program [90,91], which finds

a population tree that minimizes the number of ‘‘deep coales-

cences’’ required for reconciliation with a given set of local trees,

allowing for both incomplete lineage sorting and hybridization

(admixture) events between groups. PhyloNet recovered the

expected phylogeny for these populations in the absence of

hybridization and generally detected complex patterns of gene

flow where they are believed to have occurred, but it had difficulty

reconstructing the precise relatinonships among source and

admixed populations (Supplementary Figure S20). These exper-

iments suggested that the posterior distribution of ARGs does

appear to contain useful information about population structure

even when a noninformative prior distribution is used, but that

additional work will be needed to fully exploit the use of ARG

inference in demographic analysis.

An alternative strategy would be to extend our methods to

incorporate a full phylogenetic demographic model, such as the

one used by G-PhoCS [92], thereby generalizing this fully

Bayesian method to a setting in which recombination is allowed

and complete genome sequences are considered. Importantly, the

use of the complete ARG would allow information about

demographic history from both patterns of mutation and patterns

of linkage disequilibrium to be naturally integrated (see [92]).

However, as with CSD-based methods [51,52], an extension to a

full, parametric multi-population model for application on a

genome-wide scale would be technically challenging. In our case,

it would require the ability to sample ‘‘threadings’’ consistent with

the constraints of a population model (e.g., with no coalescent

events between genetically isolated populations) and exploration

of a full collection of population parameters, which would likely

lead to slow convergence and long running times. Nevertheless, a

version of this joint inference strategy may be feasible with

appropriate heuristics and approximations. Our methods may

also be useful for a wide variety of related applications, including

local ancestry inference [47,93,94], haplotype phasing/genotype

imputation [46,48,95,96], and recombination rate estimation

[22,97].

Our initial implementation of ARGweaver relies on several

simplying assumptions that appear to have minimal impact on

performance with (real or simulated) human sequence data, but

may produce limitations in other settings. Following Li and

Durbin [42], we compute probabilities of recombination between

discrete genomic positions under the assumptions of the contin-

uous-space SMC [37]. When recombination rates are low, the

discrete and continuous models are nearly identical, but the

differences between them can become significant when recombi-

nation rates are higher [98]. Similarly, our assumption of at most

one recombination event per site and our use of the SMC rather

than the improved SMC0 [38] may lead to biases in cases of higher

recombination rates, larger numbers of sequences, or more

divergent sequences. In addition, our heuristic approach of

accommodating zero-length branches by randomly sampling

among ‘‘active’’ branches for coalescence and recombination

events (see Methods) may lead to biases when the discretization

scheme is coarse relative to evolutionary events of interest. Finally,

we currently assume haploid genome sequences as input, which, in

most cases of current interest, requires computational phasing as a

pre-processing step. Phasing errors may lead to over-estimation of

recombination and mutation rates and associated biases, because

the sampler will tend to compensate for them with additional

recombination and/or mutation events. In principle, most of these

limitations can be addressed within our framework. For example,

it should be fairly straightforward to extend ARGweaver to use the

SMC’ and Hobolth and Jensen’s finite-loci transition density. In

addition, we believe it is possible to enable the program to work

directly with unphased data and integrate over all possible

phasings (see, e.g., [92,99]).

The ability to perform explicit ARG inference on the scale of

complete genomes opens up a wide range of possible applications,

but the long running times required for these analyses and the

unwieldy data structures they produce (numerous samples of

ARGs) are potential barriers to practical usefulness. In our initial

work, we have attempted to address this problem by precomputing

ARGs for a highly informative public data set and releasing both

our complete ARGs and various summary statistics as browser

tracks for use by other groups. We have also developed a simple

Genome-Wide ARG Inference
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web interface that allows users to retrieve local trees and several

useful summary statistics for specified genomic intervals, popula-

tions, and individuals (http://compgen.bscb.cornell.edu/

ARGweaver/CG_results). In future work, it may be possible to

improve data access by providing more sophisticated tools for data

retrieval and visualization. For example, sampled ARGs could be

stored in a database in a manner that allowed researchers to

efficiently extract features such as regions of IBD or recombination

maps for designated subsets of samples. A related possibility would

be to support on-the-fly threading of user-specified query

sequences into precomputed ARGs. This operation would be

analogous to local ancestry inference [47,93,94], but would reveal

not only the population sources of query sequence segments, but

also additional information about recombination events, coales-

cence times, approximate mutation ages, and other features. The

same operation could be used to allow our sampling methods to

scale to thousands of genomes: one could infer ARGs for, say, 100

genomes, then simply thread in hundreds more, without full

MCMC sampling. In general, we believe that posterior samples of

ARGs will be a rich resource for genetic analysis, but additional

work is needed on data storage and query interfaces for these

samples to become practically useful to large numbers of genomic

researchers.

Methods

Discretized Sequentially Markov Coalescent
Discretization scheme and notation. The Discretized

Sequentially Markov Coalescent (DSMC) assumes that all

coalescence and recombination events occur at Kz1 discrete

time points, P~fs0, s1,s2,:::,sKg, with s0~0 (the present time)

and sK equal to a user-specified maximum value. These time

points are defined in units of generations before the present time.

We evenly distribute these time points on a logarithmic scale, so

that the discretization scheme has finer resolution near the leaves

of the ARG, where more events are expected to occur.

Specifically, we define sj (for 0ƒjƒK ) to be sj~g(j), where

g(j)~
1

d
exp

j

K
log(1zdsK )

� �
{1

� �
: ð4Þ

Here, sK is the maximum time and d is a tuning parameter that,

when increased, causes the time points to become more densely

clustered near the leaves of the ARG. Notice that g(0)~0 and

g(K)~sK . In this work, we have assumed sK~1,000,000
generations and d~0:1. We denote the length of time interval j

as Dsj~sjz1{sj . The DSMC process is defined such that it

approaches the continuous SMC as a limit as K?? and each

Dsj?0, with sK sufficiently large that the probability of a

coalescence event older than sK is close to zero.

It is useful to specify ‘‘midpoints’’ between time points (on a log

scale), to facilitate rounding of continuous-valued times to the

nearest discrete time point. We define the midpoint between times

sj and sjz1 (for 0ƒjvK ) as sjz1
2
~g(jz

1

2
). We can alternatively

refer to the midpoint between times sj{1 and sj as sj{1
2
~g(j{

1

2
)

(for 1ƒjƒK ), noting that sj{1
2
~g(j{

1

2
)~g((j{1)z

1

2
)~

s(j{1)z1
2
. Coalescence events that occur between sj{1

2
and sjz1

2

are ‘‘rounded’’ to time point sj . We found that it was less critical to

round recombination events to the nearest time point, so they are

simply rounded to the next most recent time point (see below). We

denote the lengths of the half intervals between j{
1

2
and j, and

between j and jz
1

2
, as Dsj{1

2
, j and Dsj, jz1

2
, respectively.

Because all coalescence events must occur at the designated

time points, the collection of branches is fixed for each interval j

between time points sj and sjz1. Given a local tree Tn
i that is

consistent with the DSMC, we denote the set of branches in time

interval j as B(Tn
i , j). The size of this set, DB(Tn

i , j)D, is of particular

interest, and is abbreviated Bj (with Tn
i clear from context). In

addition, it is often of interest to consider the branch sets for a tree

Tn
i from which a branch w has been removed. We denote such a

tree by T
n,({w)
i and abbreviate the number of branches in interval

j as B
({w)
j (again, with Tn

i clear from context).

One consequence of discretizing time is that the DSMC will

tend to generate ARGs that contain many branches of length zero

(corresponding to polytomies in the local trees), which will have

zero probability of recombination, coalesce, or mutation events. In

effect, the rounding procedure will tend to shrink short branches to

zero, which may lead to distortions in data generation and

inference. We address this problem heuristically, by defining the

DSMC to first sample the times of recombination and coalescence

events, and then randomly select a branch from all of those

‘‘active’’ at the sampled time point. We define the set of active

branches at a time point sj , for a local tree Tn
i , to be those

branches in Tn
i that start, end, or pass through sj . This set is

denoted A(Ti, j) and its size is abbreviated as Aj . As above, we use

A
({w)
j to indicate the active branches at sj excluding branch w.

Simulations indicate that this heuristic solution to the problem of

zero-length branches works fairly well in practice (see Figure S1).

Recombination process. As in the standard SMC, recom-

binations are assumed to occur according to a Poisson process with

rate rDTn
i{1D, where DTn

i{1D is the total branch length of local tree

Tn
i{1 and r is the average number of recombinations/generation/

site. Once a recombination occurs, the ordinary SMC process

places the recombination uniformly along the branches of Tn
i{1.

The analogous operation of sampling a recombination branch and

time point, Rn
i ~(w, sk), in the DSMC is accomplished by first

sampling a time point sk in proportion to the total branch length

present during time interval k, then randomly selecting one of the

Ak branches active at that time point. Consistent with the

assumptions of the SMC, the recombination point cannot occur

above the time point associated with the root r of tree Tn
i{1, which

we denote sr. Thus, the sampling distribution for a recombination

point Rn
i on a local tree Tn

i{1 is given by,

P(Rn
i DT

n
i{1,H)

~

exp({rDTn
i{1 D) if Rn

i ~1

1
Ak

: BkDsk
C

: 1{exp({rDTn
i{1 D)

� �
if Rn

i ~(w,sk), w[A(Tn
i{1,k),0ƒskvsr

1
2
: Dsk

C
: 1{exp({rDTn

i{1 D)
� �

if Rn
i ~(w,sk), w[A(Tn

i{1,r)\frg, sk~sr

0 otherwise,

8>>>>>><
>>>>>>:

ð5Þ

where C~
Pr

j~0 BjDsj is a constant that explicitly normalizes the

distribution over time points s0, . . . , sr. The special case for the

time point at the root of the tree, sk~sr, is required because the

SMC does not allow recombinations to occur beyond this point, so

the effective number of active branches is only two at this time

point, despite that Ar will have a value of three. The number of

branches in the interval above the root, Br, is necessarily one, so

this term can be omitted in this case.

ð5Þ
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This sampling distribution effectively rounds the times of

recombination events downward to the next most recent time

point. However, a strict policy of downward rounding, together

with a prohibition again recombination events above the root

node, would make it impossible to sample recombination events at

time point sr, which turns out to have undesirable effects in

inference (it makes some trees unreachable by the threading

operation). Therefore, when sampling time points, we use the

heuristic approach of imagining that recombinations can also

occur in the time interval immediately above the root and

assigning these events to the time point sr. This has the effect of

redistributing some of the probability mass from later time points

to the root, without altering the overall rate at which recombi-

nations occur (rDTn
i{1D). For this reason, the normalizing constant

C differs slightly from the total branch length DTn
i{1D; in particular,

C~DTn
i{1DzDsr. It would be slightly more elegant to allow

upward as well as downward rounding of times for recombina-

tions, as we do with coalescence events (see below), but as long as

the time discretization is not too coarse these differences are of

minor importance, and the approach we have used seems to be

adequate.

Re-coalescence process. Once a recombination point

Rn
i ~(w, sk) is sampled, the selected branch w is removed from

time points sk and older, and allowed to re-coalesce to the

remainder of the tree, in a manner analogous to the SMC.

Because we explicitly prohibit multiple recombinations between

adjacent positions, the local tree Tn
i must be reachable from Tn

i{1

by a single ‘‘subtree pruning and regrafting’’ (SPR) operation

corresponding to the recombination, i.e., an operation that cuts a

branch of the tree at the recombination point and re-attaches it

(and any descendant nodes) to the remainder of the tree. Thus, we

can write,

P(Tn
i DRn

i ,Tn
i{1,H)

~

1 if Rn
i ~1, Tn

i ~Tn
i{1

P(x,sj Dw,sk ,Tn
i{1,H) if Rn

i ~(w, sk), (x, sj )s:t: Tn
i ~SPR(Tn

i{1,w,sk ,x,sj), sj§sk

0 otherwise,

8>><
>>:

ð6Þ

where SPR(Tn
i{1, w, sk, x, sj) is a function that returns the new

tree produced by an SPR operation on Tn
i{1 that cuts branch w at

time sk and re-attaches it to branch x at time sj , and

P(x,sj Dw, sk, Tn
i{1, H) is a joint conditional distribution over re-

coalescence branches and time points.

The main challenge is therefore to define the discrete re-

coalescence distribution, P(x,sj Dw, sk, Tn
i{1, H), for sj§sk (as

required by the SMC). There are two distinct cases to consider:

sjwsk and sj~sk. When sjwsk, the unattached branch w must

first fail to re-coalesce during the interval between sk and sj{1
2
, and

then must re-coalesce between sj{1
2

and sjz1
2

(because all such re-

coalescence events will be rounded to sj ). By contrast, when sj~sk,

the branch w must simply re-coalesce between sj (~sk) and sjz1
2

(because the re-coalescence time is strictly bounded by the

recombination time).

In all cases, the instantaneous rate of re-coalescence in each

interval l (kƒlƒj) is given by B
({w)
l =(2Nl), in the standard

manner for the coalescent. (Note that we use B
({w)
l rather than Bl ,

because we are concerned with the coalescence rate to the

remainder of the tree, excluding branch w. We also assume a

diploid species throughout, so the total number of chromosomes

per locus is 2N.) The probability that a lineage starting at a time sl

coalesces before slz1 is given by the cumulative distribution

function for exponentially distributed waiting times,

W (l, lz1)~1{exp {
B

({w)
l Dsl

2Nl

 !
, ð7Þ

and the probability of coalescence during a sequences of intervals,

m, mz1, . . . , n{1 is given by,

W (m, n)~1{exp {
Xn{1

l~m

B
({w)
l Dsl

2Nl

 !
: ð8Þ

Similarly, the probabilities of coalescence during the half intervals

before and after time point sl are given, respectively, by,

W l{
1

2
, l

� 	
~1{exp {

B
({w)
l{1 Ds

l{1
2
,l

2Nl{1

0
@

1
A,

W l, lz
1

2

� 	
~1{exp {

B
({w)
l Ds

l,lz1
2

2Nl

0
@

1
A:

ð9Þ

Thus, the distribution of re-coalescence times for the case of sjwsk

is given by,

P(sj Dw,sk,Tn
i{1,H)~ 1{W k, j{

1

2

� 	� �
|W j{

1

2
, jz

1

2

� 	

~exp {
Xj{2

l~k

B
({w)
l Dsl

2Nl

 !
{

B
({w)
j{1 Ds

j{1,j{1
2

2Nj{1

2
4

3
5

| 1{exp {
B

({w)
j{1 Ds

j{1
2
,j

2Nj{1
{

B
({w)
j Ds

j,jz1
2

2Nj

0
@

1
A

2
4

3
5:

ð10Þ

The probability of re-coalescence for the case of sj~sk is simply,

P(sj~sk Dw,sk,Tn
i{1,H)~W k, kz

1

2

� 	

~ 1{exp {
B

({w)
k Ds

k,kz1
2

2Nk

0
@

1
A

2
4

3
5:

ð11Þ

Finally, the requirement for re-coalescence by the maximum time,

sK , is enforced by explicitly normalizing the distribution:

P(sj~sK Dw,sk,Tn
i{1,H)~1{

XK{1

l~k

P(sl Dw,sk,Tn
i{1,H): ð12Þ

Once the coalescence time point sj is chosen, a lineage x is

uniformly chosen from the A
({w)
j active lineages in Ti at that time

point, similar to the process for recombination events. Thus,

P(x,sj Dw,sk,Ti{1,H)~ 1

A
({w)
j

P(sj Dw,sk,Ti{1,H), and equation 6 can

be rewritten as,

ð6Þ
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P(Tn
i DRn

i ,Tn
i{1,H)~

1 if Rn
i ~1,Tn

i ~Tn
i{1

1

A
({w)
j

P(sj Dw,sk ,Tn
i{1,H) if Rn

i ~(w,sk), (x,sj)s:t:T
n
i ~SPR(Tn

i{1, w, sk , x, sj ), skƒsjƒsK

0 otherwise,

8>>><
>>>:

ð13Þ

where P(sj Dw, sk, Tn
i{1, H) is given by equations 10–12.

Initial local tree. The DSMC begins by generating an initial

local tree, Tn
1 , using a discretized version of the coalescent process.

This process can be decomposed into two steps: (1) the generation

of a sequence of branch counts, C~(C0,C1, . . . ,CK ) for time

points s0,s1, . . . ,sK , and (2) sampling of a topology T n
1 consistent

with these branch counts. The probability of an observed initial

tree Tn
1 can therefore be calculated as,

P(Tn
1 DH)~P(T n

1,C DH)~P(C DN) P(T n
1DC), ð14Þ

where N is a vector of effective population sizes,

N~(N0, . . . ,NK ). The branch count for time 0 is constrained to

be equal to the number of samples, C0~n, and the branch count

for time K is required to be one, CK~1 (see below).

Since the coalescent process is Markovian in time, the

distribution for the vector of branch counts can be factored by

time intervals,

P(C DN)~P(C0) P
K

l~1
P(Cl DCl{1,Dsl{1,Nl{1), ð15Þ

with degenerate first and last terms, P(C0)~I ½C0~n� and

P(CK DCK{1,NK{1)~I ½CK~1�.
The conditional distributions of the form P(Cl DCl{1,

Dsl{1,Nl{1), for 1ƒlvK , have been derived previously as [100],

P(Cl~bDCl{1~a,Dsl{1~t,Nl{1)

~
Xa

k~b

exp
{k(k{1)

4Nl{1
t

� 	
(2k{1)({1)k{b

b!(k{b)!(kzb{1)
P
k{1

y~0

(bzy)(a{y)

azy
:
ð16Þ

Hidden Markov Model
Hidden Markov model for full threading problem. As

noted in the Results section, the complete data likelihood function

under the DSMC is given by equation 2. If the full ARG

Gn~(Tn,Rn) is regarded as a latent variable, this equation defines

a hidden Markov model with a state space given by all possible

pairs (Tn
i ,Rn

i ), transition probabilities given by expressions of the

form P(Rn
i DT

n
i{1,r) P(Tn

i DRn
i ,Tn

i{1,N) and emission probabilities

given by P(Dn
i DT

n
i ,m) (see Figure 3A). The transition probabilities

can be computed using equations 5 and 13, and the emission

probabilities can be computed using Felsenstein’s pruning

algorithm. This model can be viewed as an instance of the

‘‘phylo-HMMs’’ that have been widely used in comparative

genomics [101]. As discussed in the Results section, however,

unless the number of sequences n is very small, the state space of

this HMM will be too large to allow it to be used directly for

inference.

Instead, we constrain the inference problem by fixing the ARG

for the first n{1 sequences, Gn{1, and sampling from the

conditional distribution P(GnDGn{1,Dn,H). Using the notation

Gn~(Tn,Rn) and Gn{1~(Tn{1,Rn{1), we define Tn~

(Tn{1,Y), where Y~(y1, . . . ,yL) is a vector of coalescence points

such that yi~(xi,ti) indicates a coalescence of the nth sequence to

branch xi and time point ti of local tree Tn{1
i , and

Rn~(Rn{1, Z), where Z~(z2, . . . ,zL) is a vector of recombina-

tion points such that zi~(wi,ui) indicates a recombination at

branch wi and time point ui of local tree Tn{1
i{1 between positions

i{1 and i. (Note that z1 is undefined.) Thus, we can sample from

the desired conditional distribution P(GnDGn{1,Dn,H) by sam-

pling from P(Y ,ZDTn{1,Rn{1,Dn,H). We refer to a sample

(Y , Z) from this distribution as a threading of the nth sequence

through the ARG (see Figure 3B). For now, we will consider a

complete threading (Y ,Z), but in later sections we will describe

our two-step process for sampling, first, the coalescent threading

Y , and second, the recombination threading Z given Y .

Note that the restriction to one recombination event per

position implies that zi~1 wherever Rn{1
i =1, and that

Tn{1
i{1 ~Tn{1

i wherever zi=1. This restriction is not strictly

required but it simplifies the description of new recombination

events zi, and in the setting of interest here it comes with little cost

(see Discussion).

It turns out to be more convenient to work with the joint

distribution P(Tn{1, Y , Rn{1, Z, DnDH) (the complete data

likelihood) than with the conditional distribution

P(Y ,Z DTn{1, Rn{1, Dn, H). However, to emphasize that the

variables Tn{1 and Rn{1 are held fixed (‘‘clamped’’) at pre-

specified values throughout the threading operation, we denote

them as �TTn{1 and �RRn{1, and refer to the distribution of interest as

P(�TT
n{1

, Y , �RR
n{1

, Z, �DD
nDH). (Notice that the data Dn are also

clamped, as usual for HMMs.) When Tn{1, Rn{1, and Dn are

clamped,

P(�TT
n{1

,Y,�RR
n{1

,Z,�RR
nDH)!P(Y ,Z D�TTn{1

,�RR
n{1

,�RR
n
,H): ð17Þ

Thus, samples of (Y,Z) drawn in proportion to the unnormalized

density P(�TT
n{1

, Y , �RR
n{1

, Z, �DD
nDH) will be valid samples from

the desired conditional distribution. In general, any clamped joint

density function, P(A, �BB), can be viewed as an unnormalized

version of a corresponding conditional density function, P(AD�BB),
but sometimes the joint density is more convenient to manipulate.

We can now write the density function for the (unnormalized)

sampling distribution for a threading (Y ,Z) as,

P(�TT
n{1

, Y , �RR
n{1

, Z, �DD
nDH)~

P( �TTn{1
1 , y1DN) P( �DD1D�TTn{1

1 , y1,m)

P
L

i~2
P(�RRn{1

i , zi D�TTn{1
i{1 , yi{1, r) P( �TTn{1

i , yi D�RRn{1
i , zi, �TTn{1

i{1 , yi{1, N)

|P( �DDi D�TTn{1
i , yi, m),

ð18Þ

where all terms are computable using previously described

expressions, as for equation 2.

Notice that this threading HMM has the same conditional

independence structure as the HMM for the full DSMC (equation

2, Figure 3), but its state space is now defined by sets of possible

(yi, zi) pairs rather than the set of possible (Tn
i ,Rn

i ) pairs, making it

far more tractable for inference.

Reduced model for coalescent threading. The state space

can be reduced further by proceeding in two steps. First, we

sample a coalescent threading Y from the marginal distribution

P(�TT
n{1

,Y ,�RR
n{1

, �DD
nDH)!P(Y D�TTn{1

,�RR
n{1

, �DD
n
,H). Then we sam-

ð13Þ

ð16Þ

ð17Þ
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ple a recombination threading, Z, from the conditional distribution

P(Z DY , �TT
n{1

, �RR
n{1

,H). Notice that the data need not be

considered when sampling the recombination threading, because

Z is conditionally independent of Dn given Y , Tn{1, and

Rn{1.

The marginal distribution P(�TT
n{1

, Y , �RR
n{1

, �DD
nDH) can be

computed efficiently by changing the order of products and sums

in the usual way for HMMs:

P(�TT
n{1

,Y ,�RR
n{1

, �DD
nDH)

~
X

Z

P(�TT
n{1

,Y,�RR
n{1

,Z, �DD
nDH)

~P(�TTn{1
1 ,y1 j N) P( �DD1 j �TTn{1

1 ,y1,m)

P
L

i~2

X
zi

P(�RRn{1
i ,zi j �TTn{1

i{1 ,yi{1,r) P(�TTn{1
i ,yi j�RRn{1

i ,zi,�TT
n{1
i{1 ,yi{1,N)

" #

|P( �DDi j �TTn{1
i ,yi ,m)

~P(�TTn{1
1 ,y1 j N) P( �DD1 j �TTn{1

1 ,y1,m)

P
L

i~2
P(�RRn{1

i , �TTn{1
i ,yi j�TTn{1

i{1 ,yi{1,r,N) P( �DDi j �TTi
n{1

,yi,m):

This equation defines an HMM with a state space given by the

possible values of yi only, the size of which is bounded by nK ,

where n is the number of sequences and K is the number of time

intervals (see Figure 3C).

While this model has the conditional independence structure of

a standard HMM, the state space is heterogeneous along the

sequence, because the set of possible coalescent points at each

position i depends on the local tree, Tn{1
i . (The full threading

HMM described above also has this property.) If we denote the

state space at position i as Si, the transition probabilities between

states in position i{1 and states in position i are defined by a

DSi{1D|DSi D transition matrix Ai{1~fai{1
l,m g where l and m index

the states of DSi{1D and DSi D, respectively, and ai{1
l,m can be

computed as,

ai{1
l,m ~P(�RRn{1

i , �TTn{1
i ,yi~m j �TTn{1

i{1 ,yi{1~l,r,N)

~
X

zi

P(�RRn{1
i ,zi j �TTn{1

i{1 ,yi{1~l,r)

P( �TTn{1
i ,yi~m j �RRn{1

i ,zi,�TT
n{1
i{1 ,yi{1~l,N)

ð20Þ

using equations 5 and 13. The emission probability for align-

ment column Dn
i in state l in Si is denoted bi

m(Dn
i )~

P(Dn
i D�TT

n{1
i ,yi~m,m) and can be computed using Felsenstein’s

pruning algorithm, as in all cases above. The initial state

probabilities for the HMM are given by pm~P(�TTn{1
1 ,y1~mDN)

for 1ƒmƒDS1D and can be computed using equations 14–16.

Notice that, unlike with a standard, locally normalized HMM, it

is not true in this model that
P

m ai
l,m~1. Furthermore, for two

positions i and j, it is not true in general that
P

m ai
l,m~

P
m a

j
l,m,

because of differences across positions in the local trees �TTn{1
i and

recombination points �RRn{1
i . Similarly, it is not true thatP

m pm~1. Thus, this model is not only globally unnormalized,

but it also has a heterogeneous local normalization structure across

positions. Importantly, this heterogeneity stems directly from

differences in the �TTn{1
i and �RRn{1

i and is inherent in the threading

problem—that is, it is not possible to express the desired

conditional distribution, P(Y D�TTn{1
,�RR

n{1
, �DD

n
,H), directly in terms

of a locally normalized hidden Markov model (one in which all

transition probabilities and all emission probabilities sum to one at

each position in the sequence). For this reason, we find it most

convenient to work with the unnormalized clamped joint

distribution.

Stochastic traceback. Despite the unusual features of the

HMM described in the previous section, it still permits the use of

standard dynamic programming algorithms to integrate over all

coalescent threadings Y (the forward or backward algorithms),

obtain a most likely threading ŶY (the Viterbi algorithm), compute

marginal posterior distributions for each yi (forward-backward

algorithm), and sample threadings in proportion to their condi-

tional probability [102,103]. These algorithms depend only on the

linear conditional independence structure of the model (and,

equivalently, on its factorization into local transition and emission

probabilities) and on the use of nonnegative potential functions,

both properties that are maintained in this model.

We are primarily interested in a dynamic programming

algorithm for sampling from the posterior distribution over

HMM paths that is sometimes referred to as the stochastic traceback

algorithm [103–105]. In our case, each application of this

algorithm is guaranteed to sample a coalescent threading Y in

proportion to the density P(�TT
n{1

,Y ,�RR
n{1

, �DD
nDH), and equiva-

lently, in proportion to the desired conditional distribution.

The stochastic traceback algorithm consists of a deterministic

forward pass and a stochastic backward pass. The forward pass is

identical to the forward algorithm. In our notation, the algorithm

recursively fills out a matrix F~ffi,mg, 1ƒiƒL,

1ƒmƒmaxi(DSi D). Each fi,m represents the probability of a prefix

of the data joint with a constraint on the state path at position i.

Here, fi,m~P(�TT
n{1

1:i ,�RR
n{1

1:i , �DD1:i,yi~mDH), where the notation X i:j

indicates the subsequence (Xi, . . . ,Xj). After an initialization of

f1,m~pmb1
m(Dn

1), for 1ƒmƒDS1D, the algorithm proceeds itera-

tively for i from 2 to L and sets each value fi,m (for 1ƒmƒDSi D)
equal to,

fi,m~bi
m(Dn

i )
XjSi{1j

l~1

fi{1,l ai{1
l,m : ð21Þ

Note that the heterogeneity of the state space along the sequence

implies that portions of the matrix are left undefined.

In the backward pass, the algorithm samples a sequence Y one

element at a time, starting with yL and working backward to y1.

First, yL~l is simply sampled in proportion to fL,l . Then, for i
from L{1 down to 1, each yi is sampled conditional on yiz1 in

proportion to,

qi(yi~l j yiz1~m)!fi,l ai
l,m ð22Þ

The limiting step of the algorithm is the forward pass, which in

general requires O(C2L) time, where C is the size of the state

space, C~ maxi (DSi D). However, in our case the structure of the

Ai matrices can be exploited to reduce the running time to

O(nK2L) (see Text S1).

It can be shown by induction on suffixes of Y that this

procedure will correctly sample from the target distribution,

P(Y D�TTn{1
,�RR

n{1
, �DD

n
,H). Briefly, in the base case, the suffix

yL~l is by construction sampled from the density

ð19Þ
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fL,l~P(�TT
n{1

,�RR
n{1

, �DD
n
,yL~lDH), which is proportional to the

desired conditional distribution, P(yL~lD�TTn{1
,�RR

n{1
, �DD

n
,H). For

the inductive case, assume Y iz1:L has been sampled from

P(Y iz1:LD�TTn{1
,�RR

n{1
, �DD

n
,H). The procedure of sampling yi from

qi given yiz1 is equivalent to sampling from,

qi(yi~l j yiz1~m)!fi,l ai
l,m

~P(�TT
n{1

1:i ,�RR
n{1

1:i , �DD
n

1:i,yi~l j H) P

(�RRn{1
iz1 ,�TTn{1

iz1 ,yiz1~m j �TTn{1
i ,yi~l,r,N)

~P(�TT
n{1

1:iz1,�RR
n{1

1:iz1, �DD
n

1:i,yi~l,yiz1~m j H)

!P(yi~l j Y iz1:L,�TT
n{1

,�RR
n{1

, �DD
n
,H),

ð23Þ

where the last step is possible because yi is conditionally

independent of Y iz2:L, Tn
iz2:L, Rn

iz2,L, and Dn
iz1:L given yiz1.

Thus, the algorithm will correctly sample from

P(Y i:LD�TTn{1
,�RR

n{1
, �DD

n
,H) for all i such that 1ƒiƒL.

Sampling a recombination threading. The final step in the

threading operation is to sample a recombination threading Z
conditional on a coalescent threading Y and the clamped

parameters. This step is greatly simplified by the fact that the

individual zi values are conditionally independent of one another

given the yi variables and the clamped Tn{1
i and Rn{1

i variables

(see Figure 3B). Consequently, each zi can be sampled separately

from the distribution,

P(zi j �RRn{1
i ,�TTn{1

i ,�yyi,�TT
n{1
i{1 ,�yyi{1,H)!P(�RRn{1

i ,zi j �TTn{1
i{1 ,�yyi{1,r)

P(�TTn{1
i ,�yyi j �RRn{1

i ,zi,�TT
n{1
i{1 ,�yyi{1,N),

ð24Þ

where the yi variables are now clamped along with the Tn{1
i and

Rn{1
i variables. Notice that the distribution on the RHS is the

same one considered in equations 19 & 20. The normalizing

constant for this distribution, for clamped values �yyi{1~l and

�yyi~m, is given by the transition probability ai{1
l,m .

Notice that this distribution is implicitly degenerate in the case

in which �RRn{1
i =1, owing to the limitation of at most one

recombination event per position. In particular, if �RRn{1
i =1, then

P(�RRn{1
i ,zi D�TTn{1

i{1 ,�yyi{1,r)~I ½zi~1�, hence P(zi D�RRn{1
i ,�TTn{1

i ,

�yyi, �TTn{1
i{1 ,�yyi{1,H)~I ½zi~1�. At the same time, notice that, if

�RRn{1
i ~1, a new recombination is still possible (zi=1) even if

�TTn{1
i{1 ~�TTn{1

i and �yyi{1~�yyi, because a branch could be broken by

a recombination event but then re-coalesce at precisely its original

position in the local tree.

When �RRn{1
i ~1, the efficiency of sampling from this distribu-

tion can be improved by noting that most possible zi values still

have zero probability. Let Z represent the set of zi values having

nonzero probability for given values of yi{1, yi, and v, where v
denotes the branch being threaded. There are two cases to

consider, a main case and a special case. We will denote the

corresponding subsets of zi values Z1 and Z2, with Z~Z1|Z2.

Recall that zi~(wi,ui) and yi~(xi,ti), where xi and wi are

branches in Tn{1
i{1 and Tn{1

i , respectively, and ui and ti are time

points from the set P~fs0, . . . ,sKg. In the main case, the

recombination occurs on the new branch v. Here, the recombi-

nation time ui must be at least as recent as both the old and new

re-coalescence times, ti{1 and ti. Thus, Z1~f(v,ui)D
ui[P,uiƒmin(ti{1,ti)g. Notice that DZ1DƒKz1.

The special case occurs when the recombination occurs not on

the new branch, v, but instead on xi{1, the branch to which v re-

coalesces at position i{1. A recombination on branch xi{1, below

the point at which v joins it, followed by a re-coalescence of xi{1

to v (meaning that xi~xi{1) will produce a signature exactly like

the symmetric case of a recombination on v followed by a re-

coalescence to xi{1 (Supplementary Figure S21), so this scenario

must also be considered. This case can only occur when xi{1~xi

and in the interval of time between the start of branch xi and

min(ti{1,ti). Recombinations on other branches need not be

considered, because the existence of such a recombination would

imply that Ri=1, contrary to our assumption. Hence,

Z2~
f(xi,ui) j ui[P,ui§sk,uiƒ min (ti{1,ti)g xi{1~xi

1 otherwise,

�
ð25Þ

where sk is the time point of the child node of branch xi. As with

Z1, DZ2DƒKz1.

By enumerating the elements of Z, it is possible to sample each

zi in O(K) time. The same approach can be used to enable

calculation of the ai
l,m values (equation 20) in O(K) time.

Data Preparation
Simulated data. Except where noted otherwise, simulations

were performed under the full coalescent-with-recombination

model [21]. After generation of local trees, sequence alignments

were generated using a finite-sites Jukes-Cantor model [53]. All

simulations were performed using custom computer programs.

Our standard simulation scheme involved the generation of of

twenty 1-Mb sequences, assuming an effective population size of

N = 10,000, a mutation rate of 1:8|10{8 mutations/site/

generation, and mutation-to-recombination rate ratios of

m=r[f1,2,4,6g (i.e., recombination rates of r[f1:8,0:9,0:45,0:3g
|10{8 events/site/generation). One hundred replicate data sets

were generated for each choice of m=r. Alternative parameter

values were used in certain cases, as noted in the text and figure

captions.

Real data. Information about human polymorphisms came

from the ‘‘69 Genomes’’ data set from Complete Genomics (CG)

(http://www.completegenomics.com/public-data/69-Genomes).

For each individual considered, we recorded the diploid

genotype call reported for each position in the hg19 (Genome

Reference Consortium Human Build 37) reference genome using

CG’s ‘masterVar’ files. We considered both ‘‘SNPs’’ and ‘‘length-

preserving substitutions’’ in the masterVar file, and also noted

positions where CG could not confidently assign a genotype. All

other positions were assumed to be homozygous for the allele

reported in the reference genome.

Borrowing from our previous work on demography inference

[92], we applied several filters to these data to reduce the impact of

technical errors from alignment, sequencing, genotype inference,

and genome assembly. These filters include simple repeats, recent

segmental duplications, and transposable elements. We phased the

data using SHAPEIT v2 [59], guided by the pedigree information

describing the relationships among the 69 individuals. After

phasing, we removed the child in each trio, as well as all but the

four grandparents in the 17-member CEU pedigree, leaving 54

unrelated individuals in our data set. From this set, we further

filtered all CpG sites, sites with more than two observed alleles,

and sites at which CG did not call a genotype in any of the 54

individuals. All genomic positions excluded by our filters were
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treated as missing data by ARGweaver, meaning that the program

integrated over all possible nucleotides at these positions (as in [92]).

In order to account for region-specific variation in recombination

and mutation rates, we used the HapMap phase II recombination

map [106] and a mutation rate map estimated from alignments of

several primate genomes, including chimpanzee (panTro2), orang-

utan (ponAbe2), and rhesus Macaque (rheMac2) [107]. Mutation

rates were scaled to have an average of 1:26|10{8 mutations/

generation/site and were averaged over 100 kb non-overlapping

windows. This value was obtained by assuming a genome-wide

average of 1:8|10{8 mutations/generation/site, and observing a

30% reduction in nucleotide diversity when the CpG filter was

applied.

Calls of hypervariable and invariant regions were obtained from

the CG FTP site (ftp://ftp2.completegenomics.com). Copy number

variant calls for each individual were obtained from a file named

cnvDetailsDiploidBeta, which was extracted from an ASM-VAR-

files tar archive.

Data Analysis
To sample ARGs genome-wide, we split each sequence

alignment into non-overlapping segments of 2 Mb, flanked on each

side by 100 kb of overlapping sequence. We chose a core set of 12

individuals (24 haplotypes) randomly such that each major

population group was represented. We then used ARGweaver to

sample ARGs for these genomes, assuming a population size of

N~11,534, K~19 time steps, and a maximum time of

sK~1,000,000 generations. Our prior estimate of N was based

on an empirical estimate of 4Nm&p~5:8|10{4 from the CG

sequence data, and an assumption of m~1:26|10{8 mutations per

site per generation for non-CpG sites (see previous section). This

initial step involved 500 sampling iterations, consisting of 100 initial

iterations under an infinite sites assumption, and 400 iterations with

the full finite sites model. The final sample from this initial step was

used as a starting point for threading in the remaining genomes.

Once these were threaded, we applied ARGweaver with infinite sites

for 100 iterations, followed by 2400 iterations with the finite sites

model. Samples were recorded every 10 iterations for the final 2000

iterations, for a total of 200 samples. For our genome-wide analyses,

we integrated the separate 2.2 Mb analyses by setting a switchpoint

at the middle of each overlapping 100 kb segment, in order to

minimize boundary effects at the analyzed sites.

To compute the neutral CDFs in Figure S17, we used a set of

putatively neutral regions obtained by removing all GENCODE

(v15) genes plus 1000 bp flank on either side of each exon, as well

as all mammalian phastCons elements plus 100 bp of flanking

sequence. From the remaining portion of the genome, we sampled

1000 sets of 69 regions with the same distribution of lengths as the

non-CpG regions identified by [77].

To estimate the allele age at each polymorphic site, we

considered all local genealogies sampled at that position,

discarding any sampled genealogies that required more than one

mutation to explain the observed data. In addition, we required

that all of the retained genealogies implied the same derived allele,

excluding positions that violated this condition from our analysis.

For the remaining cases, we estimated the allele age for each

sample as the average age of the branch on which the mutation

leading to the derived allele was assumed to occur by parsimony,

and averaged this value across samples.

Supporting Information

Figure S1 ARGs simulated under Discretized Sequentially

Markov Coalescent model are similar to those simulated under

continueous models. ARGs were simulated using the coalescent-

with-recombination (red), Sequentially Markov Coalescent (green),

and Discretized Sequentially Markov Coalescent (blue). Three

versions of the DSMC were considered: ones with with K~39
(dark blue), K~19 (medium blue), and K~9 (light blue) time

intervals. In all cases, we assumed sK~200,000 generations. Our

standard simulation parameters were used (see Methods) except

that sequences were of length 100 kb (rather than 1 Mb) to save in

computation. (A) Numbers of recombinations at four different

recombination rates corresponding to m=r~1,2,4,6 (in reverse

order). To make the comparison fair, recombinations between

nonancestral sequences (which are disallowed by the SMC/

DSMC) are excluded in the case of the coalescent-with-

recombination. However, ‘‘diamond’’ or ‘‘bubble’’ recombinations

(ones that are immediately reversed by coalescence events, going

backwards in time) were included, so any distortion from

excluding these events in the SMC/DSMC is reflected in the

figure. (B) Numbers of segregating sites at three different effective

population sizes with m=r~1.

(PDF)

Figure S2 Illustration of ‘‘leaf trace.’’ An example leaf trace

(highlighted in gray) is shown for a hypothetical 10-kb genomic

segment and six haploid sequences. The ARG for these sequences

contains two local trees (shown to left and right) separated by a

single recombination event (red circle and arrow). In the leaf trace,

each sequence is represented by a line, and these lines are ordered

and spaced according to the local tree at each position. Spacing

between adjacent lines is proportional to time to most recent

common ancestry of associated sequences. (Notice, however, that

it is not possible to impose a similar interpretation on non-adjacent

lines in the diagram.) Nonrecombining genomic intervals are

reflected by blocks of parallel lines. Recombinations lead to

changes in spacing and/or order and produce vertical lines in the

plot. Notice that aspects of the leaf ordering are arbitrary, because

the two children between each ancestral node can be exchanged

without altering the meaning of the diagram. In addition, this

visualization device applies to a single ARG and does not easily

generalize to distributions of possible ARGs. For our genome

browser tracks, we use the single most likely ARG sampled by

ARGweaver as the basis for the plots. Finally, note that the lines in

the plot can be colored in various ways. In our current tracks, they

are colored according to the population origin of each haploid

sequence.

(PDF)

Figure S3 Convergence of ARGweaver with simulated data.

When the number of sequences exceeds 6–8, the Metropolis-

Hastings algorithm and subtree threading operation are needed

for ARGweaver to have acceptable convergence properties. This

plot shows results for 20 1-Mb sequences, generated under our

standard simulation parameters with m=r~2 (Methods). Here the

measure of convergence is the difference between the number of

inferred recombination events and the number of true recombi-

nation events. Other measures show similar patterns.

(PDF)

Figure S4 Recovery of global features of simulated data for

various values of m=r. This figure is the same as Figure 4A, except

that it shows results for four different values of the mutation-to-

recombination rate ratio, ranging from m=r~1 (bottom row) to

m=r~6 (top row). The second row from the bottom (with m=r~2)

is identical to Figure 4A. Notice that high values of m=r lead to

reduced variance in all estimates, owing to larger numbers of

mutations per local genealogy, but that the estimates remain

reasonably accurate in all cases. However, there does appear to be

Genome-Wide ARG Inference

PLOS Genetics | www.plosgenetics.org 22 May 2014 | Volume 10 | Issue 5 | e1004342

ftp://ftp2.completegenomics.com


a slight tendency to under-estimate the number of recombinations,

particularly at low values of m=r, probably due to approximations

inherent in the DSMC (see text). Note that these are generated by

the full coalescent with recombination, not the DSMC.

(PDF)

Figure S5 Recovery of TMRCA along simulated sequences for

various values of m=r. This figure is the same as Figure 4B except

that it shows results for four diffrent values of the mutation-to-

recombination rate ratio, ranging from m=r~1 (bottom panel) to

m=r~6 (top panel). Each panel represents one randomly selected

simulated data set. Pearson’s correlation coefficients (r) for true vs.

estimated TMRCAs across all local trees are shown in the top

right corner of each panel. As expected, the quality of the

estimates generally improves with m=r, but this example suggests

there is limited improvement above m=r~4.

(PNG)

Figure S6 Recovery of recombination rates from simulated data.

We simulated an alignment of 100 sequences with N~10,000 and

m~2:5|10{8, allowing for variable recombination rates based on

estimates along the human genome. Despite the assumption in the

prior of a constant recombination rate of r~1:16|10{8, the

posterior mean estimate of the average number of recombinations

in a 1 kb sliding window (red line) correlates well with the true

recombination rates used during simulation (black line). Notice that

recombination hotspots are clearly identifiable by peaks in the

inferred rates but the magnitudes of these peaks are dampened by

the use of a uniform prior. Only recombinations that produced

changes in tree topology (the class that is detectable by our methods)

were considered for the plot of the true recombination rate.

(PDF)

Figure S7 Estimating ages of derived alleles in simulated data.

(A,C,E,G) Inferred allele age correlates well with true allele age

according to both Pearson’s (r) and Spearman’s rank (rs)

correlation coefficients. Correlation is strongest for high muta-

tion/recombination rate ratios. Ages were estimated by calculating

the midpoint of the branch on which the mutation was inferred to

occur, under an infinite sites model, and averaging across sample

from the posterior distribution. Points are colored on a spectrum

from blue to green in proportion to derived allele frequencies.

(B,D,F,H) Allele frequency has significantly lower correlation with

true allele age, implying that the ARG will enable much better

estimates of allele age than allele frequencies alone. Ages are

measured in generations before the present. Our standard

simulated data sets were used (Methods).

(PDF)

Figure S8 Recovery of local tree topologies. Sequences were

simulated under the coalescent-with-recombination using our

standard parameters (Methods), ARGs were inferred using

ARGweaver, then 100 equally spaced local trees were extracted

from the sampled ARGs. The topologies of these trees were

compared with the true trees generated during simulation at

corresponding positions in the alignment. We compared ARGwea-

ver with the heuristic programs Margarita [34] and treesim using two

measures: (A) branch correctness (one minus the normalized

Robinson-Foulds (RF) distance [108]) and (B) Maximum Agree-

ment Subtree (MAST) percentages (the size of the largest leaf-set

such that induced subtrees are topologically equivalent, expressed

as a percentage of the total number of leaves), across a range of

mutation to recombination rate ratios (m=r). In both (A) and (B),

error bars reflect one standard error assuming independence of

100 local trees 610 simulation replicates.

(PDF)

Figure S9 Local tree branch posterior probabilities inferred by

ARGweaver accurately reflect their probability of correctness. The

branch posterior probabilities found by ARGweaver (red) and treesim

(green) more accurately reflect the probability of the branch being

correct than the frequency at which Margarita (blue) infers a

branch. For each method, branches were binned by their posterior

probability (windows of 5%) and compared against their frequency

of branch correctness. Shaded regions represent the 95% binomial

confidence interval. This plot is based on our standard simulated

data set with m=r~6. Posterior probabilities for ARGweaver are

based on 1000 samples from the Markov chain, and the

probabilities for Margarita and treesim reflect 100 independent

samples.

(PDF)

Figure S10 Illustration of relative TMRCA halflife (RTH).

Expected genealogies under (A) neutral drift, (B) background

selection, and (C) a partial selective sweep. In each panel, the

arrows to the left indicate the complete TMRCA (T ) and the ‘‘half

TMRCA’’ (H), that is, the minimum time required for half of all

lineages to find a single most recent common ancestor. The

relative TMRCA halflife (RTH) is defined by the ratio H=T .

Because background selection (B) should primarily reduce the

overall rate of coalescence, in a manner more or less homogeneous

with respect to time, it is expected to have little effect on the RTH.

Partial sweeps (C), however, will tend to produce a ‘‘burst’’ of

coalescent events following a causal mutation (red circle), leading

to reduced values of H . Nevertheless, because some lineages

escape the sweep, the full TMRCA T is likely to remain similar to

its value under neutrality. As a result, the RTH will be reduced.

(PDF)

Figure S11 Measures of genetic variation near protein-coding

genes and partial selective sweeps for African populations. This

figures is identical to Figure 5 except that it shows results for 17

African individuals or 34 haploid genomies (from the YRI, MKK,

and LWK populations). Panel (A) is based on the same 17,845

protein-coding genes as in Figure 5A. Panel (B) is based on 271

100-kb regions predicted to have undergone partial selective

sweeps in the YRI population based on the iHS statistic [72].

(PDF)

Figure S12 Time to most recent common ancestry (TMRCA) in

the human leukocyte antigen (HLA) region. Genome browser

track displaying the sitewise time to most recent common ancestry

(TMRCA) estimated by ARGweaver based on the Complete

Genomics individual human genome sequence data (track is

available at http://genome-mirror.bscb.cornell.edu, assembly

hg19). The human leukocyte antigen (HLA) region on human

chromosome 6 contains many genomic intervals with extremely

elevated expected TMRCAs, including four of the top 20 10-kb

regions in the genome (highlighted here in gold; see descriptions in

Table 2). The red line indicates the posterior mean of the

TMRCA (estimated by averaging over the sampled local trees) and

the blue lines above and below indicate a Bayesian 95% credible

interval.

(PDF)

Figure S13 Mutation-rate normalized polymorphism rates in

the 1000 Genomes Phase 1 data are elevated in the top twenty

10 kb regions by TMRCA. Shown are cumulative distribution

fuctions for normalized polymorphism rates (computed as for

Table 2) in all 10 kb windows across the human genome (black),

the top twenty regions shown in Table 2 (red), and the fifteen

regions not identified as possible CNVs in Table 2 (blue).

(PDF)
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Figure S14 ARGweaver tracks near KCNE4. Shown is a ,10-kb

peak in the estimated TMRCA about 20 kb downstream of the

KCNE4 gene (shown in blue), which encodes a potassium voltage-

gated channel strongly expressed in the embryo and adult uterus.

The peak overlaps two ChIP-seq-supported transcription factor

binding sites analyzed by Arbiza et al. [109] (‘‘INSIGHT

Regulatory Selection’’ track). The four tracks below the TMRCA

plot show that the region in question displays elevated rates of

both low-frequency (,10% derived allele frequency; shown in

blue) and high-frequency ($10%; shown in red) polymorphisms

in the Complete Genomics data set, despite that divergence-

based estimates of the mutation rate are at or below the genome-

wide average (average values are indicated by horizontal black

lines). ARGweaver explains these observations by inferring one of

the deepest average TMRCAs in the human genome (#5 in

Table 2). Additional tracks show no indication of copy number

variation or recent duplications in this region. The leaf trace

indicates that the signal for a deep TMRCA is driven by

individuals from African populations (shown in green; the

European and East Asian populations are shown in blue and

red, respectively), suggesting that this region may contain ancient

haplotypes specific to Africa.

(PDF)

Figure S15 ARGweaver tracks near BCAR3. Shown is a large

region of elevated TMRCA in an intron of the BCAR3 gene, which

is involved in the development of anti-estrogen resistance in breast

cancer. One 10-kb segment of this region has an average expected

TMRCA of 377,017 generations, or approximately 9.4 My (#9 in

Table 2). As in the previous example, this region shows elevated

polymorphism rates but average or below-average mutation rates

and overlaps ChIP-seq-supported transcription factor binding sites

(INSIGHT track) [109]. Again, the regions of extreme TMRCA

do not seem to be explained by copy number variation or recent

duplications. In this case, however, the leaf trace demonstrates that

the ancient haplotypes are distributed across all three major

population groups (African = green, European = blue, East

Asian = red).

(PDF)

Figure S16 ARGweaver tracks near TULP4. Another large region

of elevated TMRCA upstream of the TULP4 gene, which is

thought to be involved in ubiquitination and proteosomal

degradation and has a possible association with cleft lip. One

10-kb segment has an average expected TMRCA of 345,382

generations (8.6 My; #16 in Table 2). As in the previous two

examples, this region has elevated polymorphism rates but not

mutation rates, overlaps ChIP-seq-supported transcription factor

binding sites (INSIGHT track), and does not seem to be an artifact

of copy number variation or recent duplications.

(PDF)

Figure S17 Distribution of TMRCAs in regions predicted to be

under balancing selection. Cumulative distribution functions

(CDFs) are shown for the 125 regions identified by Leffler et al.

[77] based on segregating haplotypes shared between humans and

chimpanzees (black circles), the subset of 69 loci containing no

shared polymorphisms in CpG dinucleotides (red circles) and a

collection of 69 putatively neutral regions having the same length

distribution. Neutral regions consisted of noncoding regions from

which known genes, binding sites, and conserved elements had

been removed (see [109]). Notice the pronounced shift toward

larger TMRCAs in the regions predicted to be under balancing

selection, and a slightly more pronounced shift for the subset not

containing CpGs (which are less likely to have undergone parallel

mutations on both lineages). TMRCAs are measured in

generations, as in all other figures and tables.

(PDF)

Figure S18 ARGweaver tracks near locus containing segregating

haplotypes shared in humans and chimpanzees. Elevated

TMRCA corresponding to a region identified by Leffler et al.

[77] between the FREM3 and GYPE genes (#11 in Table 3; see

black square in track at bottom). The shared polymorphisms in

this region are in strong linkage disequilibrium with eQTLs for

GYPE, a paralog of GYPA, which may be under balancing

selection. The leaf trace indicates that the ancient haplotypes are

shared across major human population groups (African = green,

European = blue, East Asian = red).

(PDF)

Figure S19 Reduction in mean allele age as a function of

annotation class and derived allele frequency. This figure shows

the same information as Figure 6B, but instead of plotting absolute

values of the estimated allele ages, it plots the estimated reduction in

allele age relative to neutrality, which is defined as the differences

between the estimated age for each annotation type and the

estimate for the corresponding neutral class (in generations). This

representation shows clearly that the reduction in allele age

increases with allele frequency much more rapidly for annotation

classes under strong selection than for those under weak selection.

The contrast between the nearly neutral classes (4d, PPh:Benign,

CV:NonPath) and the strongly selected classes (PPh:ProbDam,

CV:Path) is particularly striking. This difference can be under-

stood as follows. Reductions in allele age at nearly neutral sites will

primarily be a consequence of selection at linked sites, which, to a

first approximation, will decrease the local effective population

size. This will have the effect of approximately re-scaling allele

ages by a constant factor across all ages, making the reduction in

age roughly proportional to the absolute age. Mutations under

stronger direct selection, by contrast, will spend disproportionally

less time at higher frequencies, making their reductions in age at

high frequencies disproportionally larger than those for nearly

neutral mutations (see [79]). This effect will occur even in the

absence of dominance (h~
1

2
), but it could be exascerbated by

dominance, which will tend to make low-frequency alleles invisible

to direct selection. In any case, this plot shows that selection from

linked sites can produce comparable, or even larger, reductions in

age than direct selection at low allele frequencies, but at high

frequencies, direct selection tends to dominate in age reduction.

(PDF)

Figure S20 Human population phylogenies inferred from

sampled ancestral recombination graphs. Phylogenetic networks

for the eleven populations represented in the Complete Genomics

data set were reconstructed using the PhyloNet program [90,91].

As input to PhyloNet, we used 2,304 local trees extracted from the

ARG at approximately 1 Mb intervals, with one randomly

sampled chromosome per population (see Text S1). (A) Population

phylogeny inferred in the absence of hybridization/admixture,

showing the expected primary relationships among populations.

(B) Population networks inferred when between one and five

hybridization nodes are allowed. Populations inferred to be

admixed are indicated by gray lines and the inferred hybridization

nodes are shown as gray circles. Numbers indicate the order in

which these nodes appear. For example, when one hybridization

node is allowed, the MKK population is inferred to be admixed,

and when two are allowed, the MXL population is also inferred to

be admixed. The inferred network is consistent with other recent

studies in many respects, but PhyloNet is unable to reconstruct the
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precise topology of the complex subnetwork consisting of the GIH,

MXL, PUR, CEU, and TSI populations (see Text S1). Population

names follow the convention used by the HapMap 3 and 1000

Genomes projects: CHB = Han Chinese in Beijing, China;

JPT = Japanese in Tokyo, Japan; GIH = Gujarati Indians in

Houston, Texas; MXL = Mexican ancestry in Los Angeles,

California; PUR = Puerto Ricans in Puerto Rico; CEU = Utah

residents with Northern and Western European ancestry from the

Centre d’Etude de Polymorphisme Humain (CEPH) collection;

TSI = Toscani in Italy; MKK = Maasai in Kinyawa, Kenya;

LWK = Luhya in Webuye, Kenya; ASW = African ancestry in

Southwest USA; YRI = Yoruba in Ibadan, Nigeria.

(PDF)

Figure S21 Cases for new recombination zi given re-coalescence

point yi. (A) In the main case, the recombination zi (blue point)

occurs on the branch that is being threaded into the ARG (v;

shown in red). After a recombination on this branch, a re-

coalescence can occur at any point yi (green points) in the local

tree Tn{1
i such that yi is at least as old as zi. Therefore, when

enumerating the possible zi consistent with a given yi, one must

consider all points on branch v at least as recent as yi. This set is

denoted Z1 in the text. (B) There is an additional special case to

consider when branch v coalesces to the same branches of Tn{1
i at

positions i{1 and i, that is, when xi{1~xi. In this case, it is

possible that the recombination zi (blue point) occurs not on the

new branch v but on xi (black branch) at a time point no older

than the re-coalescence time yi (green points). A recombination of

this kind will leave an identical signature to the symmetric case of a

recombination on v in the same time interval followed by a re-

coalescence of v to xi. Therefore, when enumerating the possible

zi consistent with a given yi such that xi{1~xi, one must also

consider the set Z2 consisting of all zi on xi such that zi is at least

as recent as yi. Notice that, in both (A) and (B), the tree excluding v

is unchanged by all recombination and coalescence scenarios

(zi,yi) under consideration, i.e., Tn{1
i{1 ~Tn{1

i (black branches).

(PDF)

Text S1 Supplementary methods and analyses.

(PDF)
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