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The Principle of Maximum- Likelihood

@ The general prinicple of Maximum-Likelihood

@ Suppose that we have ¢ data sets D;...D. with the sample D;
haveing been drawn independently according to the
probability distribution p(x | w;)

@ We say that such sample are i.i.d.-idependent and identically
distributed random variables

@ we assume that p(x | wj) has a known parameter form, and
therefore determined uniquely by the value of its paramenter
vector 0;

@ For example, we might have p(x | w;) = N(u;j,0;) where §; is
the vector of all components of y;, 0;.
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The Problem we want to solve

o Notation

@ To show the dependence of of p(x | w;) on 6; explicitly, we
write p(x | ;)

o The Problem we want to solve

@ Use the information provided by the training samples to obtain
good estimates for the unknown parameter vectors 61, ..., 0.

@ To simplify, assume that D; give no information about
0;,j # i. Parameters are different classes are functionally

different. And so we now have ¢ problems of the same form.
So we will work with a generic one such data set D.

@ We use a set D of training samples drawn independently from
the probability distribution p(x | 6) to estimate the unknown
parameters vector 6.
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The Maximum Likelihood Estimate

Suppose D contains n samples x, ..., x,. Because the samples
were drawn independently we have

p(D | 0) = HP(XHH

@ p(D | ) viewed as a function of 0 is the likelihood of # with
respect to D

@ The maximum-likelihood estimate of @ is, by definition, the
value € that maximizes p(D | 0)

@ Intuitively, this estimate corresponds to the value of 8 that in
some sense best agrees with or supports the actually observed
training sample.
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Log-Likelihood maximization

@ For analytical reasons, it is easy to work with the logarithm of
the likelihood than with the likelihood itself, so we use the
log-likelihood objective function

@ Because the logarithm is monotonically increasing, the 0 that
maximizes the log-likelihood also maximizes the likelihood

o If p(D | 6) is a differentiable function of #, § can be found by
standard differntial calculus methods
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Log-Likelihood Maximization

o If 0 = (61,...,0,)7, let Vy be the gradient operator

0 0
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Log-Likelihood Maximization

e Define L(6) as the log-likelihood function
L(6) = In p(D | )

and

0 = arg max L(0)

@ as the argument that Maximizes the log-likelihood; the
dependence on D is implicit.
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Log-Likelihood Maximization

@ We have by the independence condition

L(O) =" In plxe | )
k=1

and

n
Vol = ng In p(xk | 0)
k=1

@ This the necessary conditions for the maximum-likelihood
estimate for  can be obtained from the set of r equations

VoL =0
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The Expectation-Maximization (EM) Algorithm

@ We extend now our application of maximum likelihood to
permit learning of parameters governing a distributionfrom
training points, some of which have mising data features.

@ If there is no missing data, we can use maximum likelihood,
i.e., find 6 that maximizes the log-likelihood L(#).

Sorin Istrail



The Expectation-Maximization (EM) Algorithm

@ The basic idea of the EM algorithm is to iteratively estimate
the likelihood given the data that is present.

e Consider a full sample D = {xq, ..., x5} of points taken from a
single distribution. Suppose that some features are missing:
so we can define for each sample point xx = {x,, Xk, }

@ i.e., contianing “good” features and the missing data as
“bad” features.
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@ Let us separate the features in two classes Dg and Dy, where
D =DgUDy
@ Next we define the Baum function
Q(6: 8') = Ep,(In p(Dg, Dy 0) | Dy )

@ known as the Central Equation
@ where Q is a function of § with the 6’ assumed fixed, and

e &p, is the expectation operator computing the expected value
marginalized over the missing features assuming 6’ are the
“true” parameters describing the full distribution
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@ The best intuition behind the Central Equation in the EM
algorithm is as follows:

o The parameter vector & is the current best estimate for the
full distribution

@ 0 is a candidate vector for an improved estimate
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@ Given such a candidate 6, the right-had side of the central
equation calculates the likelihood of the data including the
unknown features D; marginalized with respect to the current
best distribution which is described by 6’

@ Different such candidates will lead to different such likelihoods

@ Our algorithm will select the best such candidates 6 and call it
§'*1, the one corresponding to the greatest value of Q(6;6")
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Expectation-Maximization (EM) Algorithm
BEGIN Initiatlize theta powerto O, epsilon, i=0

DO i=i+1
E step: Compute Q(theta; theta topower i)

M step: theta topower {i+l1} = arg max
Q(theta, theta topower i)

UNTIL Q(theta topower {i+1}; theta topower i) -
Q((theta powerto i; theta topower {i-1}) <= «

RETURN theta-hat = theta topower {i+1}
END
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@ The EM algorithm is most useful when the optimization of the
Q function is simpler than the likelihood L.

@ Most importantly, the algorithm guarantees that the
log-likelihood of the good data (with the bad data
marginalized) will increase monotonically.

@ This is not the same as finding the particular values of the
bad data that givess the maximum-likelihood of the full,
complete data.
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