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Results from physical mapping projects have re- 
cently been reported for the genomes of Escirerichiu 
coli, Saccharomycee cerevisiae, and Caenorhabditis 
elegune, and similar projects are currently being 
planned for other organisms. In such projects, the 
physical map is assembled by first “fingerprinting” a 
large number of clones chosen at random from a re- 
combinant library and then inferring overlaps be- 
tween clones with sufficiently similar fingerprints. 
Although the basic approach is the same, there are 
many possible choices for the fingerprint used to 
characterize the clones and the rules for declaring 
overlap. In this paper, we derive simple formulas 
showing how the progress of a physical mapping 
project is affected by the nature of the Angerprinting 
scheme. Using these formulas, we discuss the analytic 
considerations involved in selecting an appropriate 
Angerprinting scheme for a particular project. 
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1. INTRODUCTION 

Given a gene of interest in a higher eukaryote, an 
increasing array of techniques are becoming available 
for isolating a DNA clone located within l-2 million 
base pairs of the gene locus. Cloning the gene then 
requires traversing the remaining gap. The traditional 
approach of chromosomal walking, however, is ill- 
suited to such long distances. 

Accordingly, attention has focused recently on the 
potential advantages of constructing a complete phys- 
ical map of the DNA of an organism, consisting of 
overlapping clones spanning the entire genome. In 
principle, the overlapping clones could consist of 
phage with 15kb inserts, cosmids with 40-kb inserts, 
or artificial chromosomes propagated in yeast with 
lOO- to lOOO-kb inserts (Burke et al., 1987). By elimi- 
nating the need for tedious walking, a physical map 
would allow molecular biologists to focus on the more 
challenging issue of pinpointing the gene within an 

available region of up to several megabases and of 
studying its properties. In addition, the overlapping 
clones comprising the physical map would constitute 
the logical substrate for efforts to sequence an organ- 
ism’s genome. 

Recently, three pioneering efforts have investigated 
the feasibility of assembling physical maps by means 
of “fingerprinting” randomly chosen clones. The fin- 
gerprints consisted of information about restriction 
fragment lengths. Overlaps between clones were in- 
ferred when the fingerprints of two clones were suffi- 
ciently similar. The three groups used different spe- 
cific criteria for declaring overlap, but, broadly 
speaking, the criteria amount to the requirement that 
the clones overlap in a sufficiently long region. In 
particular: 

(i) Olson et al. (1986) fingerprinted 5000 X clones 
containing approximately 15-kb inserts of genomic 
DNA from Saccharomyces cerevisiae, by measuring 
the restriction fragment lengths obtained upon double 
digestion with EcoRl and HindIII. 

(ii) Coulson et al. (1986) adopted a somewhat dif- 
ferent protocol to fingerprint nearly 8000 cosmids 
containing approximately 34-kb inserts of genomic 
DNA from Caenorhabditis elegans. They digested cos- 
mid DNAs with the six-cutter HindIII, filled the 5’- 
overhang with radioactive nucleotides, digested with 
the four-cutter Sau3A, and then determined the size 
of the labeled fragments by electrophoresis in a se- 
quencing gel followed by autoradiography. 

(iii) Kohara et al. (1987) used a more elaborate fin- 
gerprint to analyze 1025 phage clones containing 
15.5-kb inserts of genomic DNA from E. coli: for each 
clone, they constructed a complete restriction map 
involving sites for eight restriction enzymes. See 
Daniels and Blattner (1987) for another early E. coli 
mapping project. 

As expected by each group of investigators, the 
random fingerprinting procedure did not yield com- 
plete physical maps. Instead, it produced many “is- 
lands,” each a fragment of the desired map consisting 
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of one or more overlapping clones. Completing the 
map requires finding clones that join the islands. Ko- 
hara et al. have already essentially completed this task 
for E. coli by closing 63 of 70 gaps via DNA hybridiza- 
tion, but this approach would be more formidable for 
higher organisms in which thousands of islands would 
occur. 

Planning a physical mapping project involves esti- 
mating how the expected number of islands varies 
with the number of clones fingerprinted and the type 
of fingerprinting scheme used. Computer simulations 
have previously been used for this purpose (Coulson 
et al., 1986). 

In this paper, we derive some simple mathematical 
formulas that characterize the properties of islands in 
a physical mapping project. The formulas make ex- 
plicit how the fingerprinting scheme itself-in partic- 
ular, the extent of overlap that can be reliably de- 
tected between two clones-determines the progress 
of the project. In light of these results, we then 
present a simple analytical approach for comparing 
different fingerprinting schemes which might be con- 
sidered in a mapping project. 

The paper is organized as follows. Section 2 
presents the basic formulas, Section 3 considers their 
agreement with experimental results, and Section 4 
discusses some basic considerations in designing a 
fingerprinting scheme. All mathematical proofs are 
deferred until Section 5, so as not to interfere with the 
main points of the text. 

In a sense, the results below may be considered as 
analogs of the well-known formulas given by Clarke 
and Carbon (1976) for the completeness of a recombi- 
nant library. Just as those formulas provide the ap- 
proximate probability that any given sequence will be 
present in the library, the results here provide the 
approximate probability that contiguous stretches of 
any given size will be found when clones from such a 
library are fingerprinted. 

In addition, we should note that the results below 
also apply to the progress of “shotgun” DNA se- 
quencing, since the DNA sequence of the individual 
fragments can be thought of as the most detailed pos- 
sible fingerprint. 

2. THE DISTRIBUTION OF ISLANDS 

A fingerprinting scheme consists of two parts: (i) a 
method for fingerprinting a clone to obtain certain 
partial information about it, and (ii) a rule for declar- 
ing overlaps between clones sufficiently strict that 
false positives are rare. 

For the purpose of analysis, we will make certain 
simplifying assumptions, which we later relax. First, 
we will abstract away the details of the particular fin- 
gerprinting scheme by simply considering an idealized 
scheme capable of detecting overlap between two 

clones whenever they share at least a fraction 0 of 
their length. (In reality, the minimum detectable 
overlap for most fingerprinting schemes will vary 
somewhat from clone to clone, depending on the num- 
ber of restriction fragments in the clone. Neverthe- 
less, we may think of 19 as the expected minimum frac- 
tional overlap required between two clones.) In addi- 
tion, suppose that the criteria for overlap are 
sufficiently stringent that false positives are rare. 

Suppose that we have a perfectly representative ge- 
nomic library, with all inserts of equal size. Define the 
following symbols: 

G = haploid genome length in bp; 
L = length of clone insert in bp; 
N = number of clones fingerprinted; 
1~ = N/G = probability per base of starting a new 

clone; 
T = amount of overlap in base pairs needed to detect 

overlap; 
0 = T/L; 
c = redundancy of coverage = LNIG. 

Clones fall into “apparent” islands consisting of 
one or more members, based on their fingerprints. 
The islands are only “apparent” because some actual 
overlaps will go undetected. Islands with two or more 
members will be called “contigs,” a coinage due to 
Staden (1980), and the gaps between islands will be 
called “oceans.” 

The following results describe some expected prop- 
erties of islands and oceans, both apparent and actual, 
as the mapping project proceeds. 

Proposition 1. Let 8 be the fraction of length which 
two clones must share in order that the overlap be 
detectable given the fingerprinting scheme, let N be 
the number of clones fingerprinted, and let c be the 
redundancy of coverage. Also, let d = 1 - 19. 

(i) The expected number of apparent islands is 
Ne-‘“. 

(ii) The expected number of apparent islands con- 
sisting of j clones (j 2 1) is 

Ne-ZC”(l _ e-Co)j-lm 

(ii’) The expected number of apparent islands con- 
sisting of at least two clones (i.e., contigs) is 

Ne-‘” - Ne-a”. 

(iii) The expected number of clones in an apparent 
island is e’“. 

(iv) The expected length in base pairs of an appar- 
ent island is 

L[( (ecu-1)/c) + (1 - a)]. 
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Approximate value of GIL 

Phage (15kb) Cotmid (40kb) Yeast (1Mb) 

E. coli 267 100 4 

S. cerevisiae 1333 500 20 

C. elegans 5,667 2,125 65 

Human 200,000 75,000 3,000 

0 2 4 6 0 

Genome Equivalents Fingerprinted 

FIG. 1. The graph shows the expected number of islands as a function of the number of genome equivalents fingerprinted, for four values 
of the minimum detectable overlap, 0. In order to make the graph independent of the genome size, the number of islands is expressed as a 
multiple of G/L, the size of the genome divided by the size of a cloned insert. The table lists the values of G/L for certain representative 
organisms and cloning vectors. 

(v) The corresponding results for the actual islands 
that would result if all overlaps could be detected are 
obtained by setting u = 1. For example, the expected 
number of actual islands is Ne-“. 

(vi) The probability that an ocean of length at least 
kL occurs at the end of an apparent island is e-c(k+s). In 
particular, taking k = 0, the probability that an appar- 
ent ocean is real (as opposed to an undetected overlap 
occurring) is e+. 

The minimum detectable overlap 0 clearly has a 
major effect on the progress of a mapping project. 
Figure 1 shows the expected number of islands as a 
function of the number c of genome equivalents of 
DNA fingerprinted, and Fig. 2 shows expected aver- 
age island length. At the beginning of the project, the 
number of islands increases because new clones are 
unlikely to overlap others. The maximum number of 
islands occurs at c = (1 - 6)-l and is equal to 
(GIL)e-l(l - e)-l. After this point, the number of is- 
lands declines as gaps are closed. After some point, a 
directed strategy for bridging gaps must be employed, 
since it would require a huge amount of work to close 
all the gaps by fingerprinting random clones. 

Notice how decreasing the minimum detectable 
overlap from 50 to 25% greatly speeds the progress of 
the project. By contrast, the decrease from 25% mini- 
mum detectable overlap to the theoretical limit at 0% 
has relatively less effect. These results suggest that a 
fingerprinting scheme with 8 = 0.15-0.20 may be a 
sensible goal, with further decrease being of limited 
value. Of course, the advantage of smaller 0 must be 

balanced with the increased effort to obtain a more 
sensitive fingerprint. 

How do the results change if we relax our simplify- 
ing assumptions about 8 and L? We briefly summarize 
the effect here; a more precise statement of the results 
is given in Section 5. 

Proposition 2. Suppose that 8 and L are allowed to 
vary from clone to clone. Compared to the situation in 
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Genome Equivalents Fingerprinted 

FIG. 2. The graph shows the expected length of an island as a 
function of the number of genome equivalents fingerprinted, for 
four values of the minimum detectable overlap, 0. 
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which B and L were fixed at their average value, the 
following results hold: 

(i) at any stage of the project, the expected number 
of islands is somewhat greater; 

(ii) at any stage of the project, the expected num- 
ber of clones per island is somewhat smaller; 

(iii) the expected number of contigs is somewhat 
smaller at early stages of the project and somewhat 
greater at later stages of the project. 

Finally, we ask: Is there an advantage to construct- 
ing a physical map chromosome by chromosome, 
rather than all at once? At first glance, there appears 
to be no advantage: the formulas of our model are 
linear in N, the number of clones fingerprinted. In an 
organism with two chromosomes of equal length, one 
would expect the same number of islands if N clones 
were fingerprinted from a whole genomic library or if 
N/2 clones were fingerprinted from each of two chro- 
mosome-specific libraries-provided that, in each 
case, the fingerprinting scheme could detect matches 
between clones overlapping in a proportion 6’ of their 
length. 

In fact, there are some second-order considerations 
that favor subdividing the project: 

(i) If the rule for declaring overlaps were kept con- 
stant, the rate of false positives would be greater for 
genomes of larger size. In order to maintain the same 
rate of false positives, a greater proportion of overlap 
0 must be required for declaring overlap in a larger 
genome. However, the effect is not large (cf. Section 4 
below). 

(ii) If the genome were divided into two parts, an 
investigator might decide not to fingerprint an equal 
number of each half: as the project progressed, the 
investigator could fingerprint more clones from 
whichever half was progressing more slowly. How- 
ever, the law of large numbers assures roughly compa- 
rable progress in each half (unless systematic cloning 
bias caused one half to be significantly less represen- 
tative.) Only a slight increase in efficiency would re- 
sult (unless the genome were decomposed into so 
many parts that the expected number of clones re- 
quired to cover each part was small). 

In addition to these mathematical considerations, 
there are various practical issues that might favor 
subdividing the project as well. For example, subdi- 
viding the project permits the adoption of improved 
fingerprinting strategies for later parts, as they be- 
come available. 

3. AGREEMENT WITH EXPERIMENTAL DATA 

The formulas in the previous section can be used to 
predict the expected progress of the recent physical 
mapping projects in bacteria, yeast, and nematodes. 
The extent of agreement will depend, of course, on 
how closely the assumptions above are satisfied. 

One key consideration is whether the minimum de- 
tectable overlap may be taken to be a constant 13, inde- 
pendent of the clone under consideration. Proposition 
2 gives some implications of nonconstant 8. This as- 
sumption will be satisfied by fingerprinting methods 
involving information derived from a large number of 
fragments (such as that used in E. coli): in this case, 
clones will all have about the same density of finger- 
print information and therefore will require roughly 
the same minimum overlap needed to recognize a 
match. By contrast, our assumption may not fit well 
for more rudimentary fingerprinting schemes: some 
clones might contain too little fingerprint information 
to make it possible ever to declare overlap. For exam- 
ple, since the yeast project required that clones share 
five restriction fragment lengths in order to declare 
pairwise overlap, those clones containing fewer than 
six fragments could never be joined into islands. 
Thus, our formulas would be expected to agree closely 
with the data for the E. coli project, but significantly 
to underestimate the number of singleton clones for 
the yeast project. This is indeed the case, as we shall 
see presently. 

A second important assumption is that the libraries 
represent unbiased samples from the genome. Clon- 
ing bias will obviously slow progress, to a degree that 
depends rather sensitively on the nature and extent of 
the bias. For example, some bias was reported in the 
C. eleguns project, as noted below. 

(i) E. coli 

On the basis of pairwise fingerprint comparison, 
Kohara et al. (1987) arranged 1025 clones into 70 is- 
lands, of which 7 were isolated singletons. A hybrid- 
ization method was then used to find clones spanning 
the gaps, resulting in all but 6 gaps being closed. 

The authors reported that the cloned inserts were 
15.5 kb on average and that an overlap of about 3 kb 
could be detected. Taking the minimum detectable 
overlap to be 0 = 3115.5 M 0.19, the genome size to be 
4704 kb, and the genome coverage c = (1025) (15.5)/ 
4704 M 3.38, the formulas predict 67.16 islands of 
which 4.39 should be singletons. The agreement with 
the observed 70 and 7 is quite close. The small dis- 
agreement is even in accord with the results of Propo- 
sition 2 on variable B and L. 

Moreover, the formulas predict that most gaps will 
be small enough to be closed in one step via hybridiza- 
tion, but that a few should remain. Given an infinite 
library to screen via hybridization, Proposition l(6) 
predicts that about 2 of 70 gaps could not be closed 
because they would be longer than 15.5 kb. If a 1-kb 
overlap on each end were required to obtain a positive 
hybridization signal, about 4 of 70 gaps would be ex- 
pected to remain because their lengths exceed 13.5 kb. 
Since only a finite library containing only 2344 clones 
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was screened by hybridization (including the clones 
that had been fingerprinted), a few additional gaps 
might remain simply because an optimally situated 
clone did not occur in the finite library. Thus, the six 
remaining gaps are well within expectation. 

(ii) S. cerevisiae 

Using a much simpler but less sensitive fingerprint, 
Olson et al. (1986) arranged 4946 clones into 1422 
islands, consisting of 680 contigs and 742 singletons. 
The average number of fragments per clone was re- 
ported to be 8.36 and the criteria for declaring overlap 
included the requirement that a pair of clones share at 
least 5 fragments. The authors noted that most of the 
742 singletons contained 5 or fewer fragments and 
thus even large overlaps involving such clones would 
be ignored in pairwise comparisons. Accounting for 
the problem of clones with 5 or fewer restriction frag- 
ments, what do our formulas predict for such a 
project? 

A simple calculation shows that somewhat less than 
14% of the clones would be expected to have 5 or fewer 
restriction fragments. (Suppose that restriction sites 
are distributed according to a Poisson process with a 
mean of 8.36 fragments, or 7.36 restriction sites, per 
clone. Letting K denote the actual number of restric- 
tion sites in a clone, then, for an any integer K, 
Prob(K = lz) = Xke-‘/iz! with h = 7.36. Accordingly, 
about 14% of all clones will have 4 or fewer sites. This 
estimate must be reduced slightly, since fragments 
smaller than 400 bp were not scored in deriving the 
estimate X = 7.36.) Taking this proportion somewhat 
arbitrarily at 13%, about 4300 clones would be ex- 
pected to have 6 or more fragments and about 650 
would have 5 or fewer. 

With 5 out of an average of 8.36 common fragments 
being required to declare overlap, we roughly estimate 
fl as 518.36 M 0.60. Since a few other technical condi- 
tions were required, the estimate should be increased 
slightly. Somewhat arbitrarily, we take 0 = 0.63. 

With N = 4303,fI = 0.63, and c = 4.5 (as reported by 
the authors), we expect 660 contigs and 154 single- 
tons. Adding the 643 singletons expected from clones 
with 5 or fewer fragments yields a total of 660 contigs 
and 797 singletons. This agrees fairly well with the 
observed 680 contigs and 742 singletons, given the 
rough approximations involved. 

Since the yeast project was a first-generation map- 
ping project, it is interesting to compare the results to 
the expected progress if one instead used the finger- 
print subsequently developed for E. coli. With the 
same number of clones (N = 4946, 0 = 0.20, c = 4.5), 
one would expect only about 131 contigs and 4 single- 
tons. Thus, as noted above, the use of a more infor- 
mative fingerprint can greatly speed progress toward 
the completion of a physical map. 

(iii) C. elegam 

Coulson et al. (1986) used Monte Carlo computer 
simulations to determine expected progress curves, 
assuming unbiased cosmid libraries. Our formulas 
above reproduce these curves. 

Unfortunately, their experimental progress was sig- 
nificantly slower than expectation. Some of the expla- 
nation may lie in the bias in cloning efficiency that the 
authors reported: certain sequences occurred much 
more often than expected in their clone bank (e.g., 
100-fold overrepresentation of ribosomal DNA). 
Without knowing the precise nature of the cloning 
bias, it is difficult to estimate its effect on the ex- 
pected progress. 

Clearly, it is important to minimize bias in cloning 
efficiency, although this is easier said than done. The 
authors speculate that EcoK restriction endonuclease 
activity in packaging extracts might contribute to the 
bias. It is also possible that cosmid libraries are sub- 
ject to greater cloning bias than phage libraries, such 
as were used in the E. coli and S. cerevisiae mapping 
projects. 

4. EVALUATING A FINGERPRINTING SCHEME 

A good fingerprinting scheme should be able to de- 
tect relatively small overlaps between .clones, while 
allowing an acceptably low rate of false positives given 
the size of the genome to be mapped. Here, we discuss 
how the choice of the fingerprint itself and the rule for 
declaring overlaps determine the minimum detectable 
overlap and the false positive rate, with the aim of 
providing general guidance for those designing a 
mapping project. 

We consider two basic types of fingerprinting 
schemes: 

Type (a) 

The fingerprint consists of the lengths of the re- 
striction fragment lengths produced following diges- 
tion by a single enzyme (or a combination of enzymes 
used consecutively, as by Olsen et al. and Coulson et 
al-) that produces an average of n fragments. The 
matching rule declares an overlap when two finger- 
prints share at least k fragment lengths. Since mea- 
surement error is roughly proportional to fragment 
length, two restriction fragments will be assumed to 
match if their lengths differ by at most lOO&%. Typi- 
cally, 0.01 < /& C 0.05, depending on the gel system. 

Type lb) 
The fingerprint consists of a restriction map for a 

single enzyme (or enzyme combination) that produces 
an average of n fragments. The matching rule de- 
clares an overlap when the lengths of k terminal frag- 
ments in the two maps agree. Fragments will be as- 
sumed to match if their lengths differ by at most 
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100&C%, where & may be larger than, smaller than, or 
equal to ,&, depending on how the restriction maps 
are made (partial digestion or double digestions). In 
our examples below, we will take ,& = & = 0.03. 

These two examples are meant to be illustrative, 
not exhaustive. Other fingerprints, as well as more 
elaborate rules for declaring matches, clearly deserve 
further exploration. 

Intuitively, it is clear that fingerprints of type (b) 
contain more information than fingerprints of type 
(a), provided that B1 = &, The restriction map drasti- 
cally restricts which fragment length matches are to 
be considered meaningful-namely, those corre- 
sponding to overlaps between terminal segments of 
the two restriction maps. 

The following result estimates the minimum detect- 
able overlap and the chance of false positives for the 
two fingerprinting schemes specified above. 

Proposition 3. With the assumptions above, the 
minimum detectable overlap fl for both fingerprinting 
methods is approximately k/n. 

(i) For a fingerprint of type (a), the expected num- 
ber of fragments shared by fingerprints of two non- 
overlapping clones will be about ccl = f&n’. Provided 
that ccl is relatively small compared to n, the distribu- 
tion of fragments shared by two nonoverlapping 
clones will be approximately Poisson; that is, the 
probability that a declared overlap is a false positive is 
approximately 

rl(n, pl, k) = Prob(X& k), 
where X is a Poisson random variable with mean ~1~. 

(ii) For a fingerprint of type (b), the probability 
that a declared overlap is a false positive is approxi- 
mately 

dn, a, k) = 4 ($LMk(l + 3h>. 

The two fingerprinting schemes produce roughly 
the same minimum detectable overlap 6 = k/n, but 
the rate of false positives is considerably higher for 
type (a) fingerprints than for type (b) fingerprints. 
(Indeed, the rate of false positives increases with n for 
type (a) fingerprints, but is essentially independent of 
n for type (b).) In order to achieve a comparable rate 
of false positives, a larger value of k must be used for 
type (a) fingerprints, which would increase the over- 
lap B required for detection. 

For example, suppose that we use an enzyme (or 
enzyme combination) that yields an average of 10 
fragments per insert and gels that can resolve frag- 
ment lengths to within ,& = pZ = 0.03. If we simply 
measure fragments lengths and require that two such 
type (a) fingerprints match at 7 fragments, then the 
chance of a false positive will be about 0.0009 accord- 
ing to Proposition 3(i) and the minimum detectable 
overlap 0 will be approximately 700 = 0.70. 

If we instead made a restriction map of these frag- 
ments, then the same false positive rate according to 
Proposition 3(ii) could be obtained by requiring that 
fingerprints share only 2 fragments in common. Thus, 
the minimum detectable overlap yielding roughly the 
same false positive rate would be ~9 = 200 = 0.20-a 
substantial improvement in view of the results of 
Section 2. In general, the false positive rate when an 
overlap of 2 fragments is required is a2 (n, p2, k = 2) 
x pi which may be adequate for most purposes and 
yields 8 = 2/n. 

One can clearly construct more detailed finger- 
prints by combining multiple fingerprints of type (a) 
or type (b) (as Kohara et al. did using eight different 
restriction maps), determined using separate gel 
lanes. If we require that each of the component fin- 
gerprints match in at least k fragments in order to 
declare an overlap, then the chance of a false positive 
is roughly the product of the false positive rates for 
each of the component fingerprints. 

For example, if we wished to avoid constructing a 
restriction map in the situation described above, we 
could nevertheless achieve roughly the same false 
positive rate and the same minimum detectable over- 
lap (of 0 = 0.20) by using multiple type (a) fingerprints 
involving a number of independent enzymes, each 
yielding about 10 fragments. Since each fingerprint 
would have a false positive rate of about 0.44 if over- 
laps were declared whenever fingerprints shared two 
bands, straightforward calculation shows that about 
nine independent enzymes are required. The choice of 
whether to construct a single restriction map (say, via 
partial digestion as in Kohara et al.) or to determine 
restriction fragment lengths for nine different en- 
zymes would be governed in practice by an investiga- 
tor’s estimate of the work involved in each approach 
and of the acceptable rate of false positives for the 
project. Also, note that the analysis above depends on 
the resolving power (pi and p2) of the gels used. 

By following the basic approach described here, one 
can compare the features of various fingerprinting 
schemes under consideration for a project. Since the 
discussion in this paper makes a few simplifying as- 
sumptions (which may not be satisified, for example, 
by fingerprints containing few fragments, as men- 
tioned in Section 3), we would recommend that com- 
puter simulations be performed as a final step, taking 
into account any significant deviations from the as- 
sumptions. 

A final remark concerning the comparison of type 
(a) and type (b) fingerprints above is in order. We 
have analyzed the rate of false positives under the 
assumption that only pairwise comparisons are made 
between fingerprints. Although this is appropriate to 
the early stages of a mapping project, it should be 
noted that stronger matching rules can be invoked if 
many genome equivalents are eventually finger- 
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printed: multiple overlap clones in a region impose 
additional “topological” constraints which, in the 
limit, allow the entire restiction map to be recon- 
structed (Olson et al., 1986). Thus, our estimate of the 
false positive rate is too pessimistic in the event that 
many genome equivalents are to be fingerprinted. 
Further attention should be given to quantifying the 
nature and extent of this additional information. 

5. MATHEMATICAL PROOFS 

This section contains the mathematical proofs for 
Propositions 1,2, and 3. Readers interested primarily 
in applications may wish to omit this section on first 
reading. 

Proof of Proposition 1. Imagine that we move from 
base pair to base pair through the genome, starting at 
one end. The probability that we encounter the be- 
ginning of a cloned insert at any base pair is CC. An 
island begins when we encounter a cloned insert and 
continues while we detect overlapping clones. The 
probability that we begin a cloned insert and fail to 
detect an overlapping clone is a(1 - CX)~” = a(1 
- N/G)(G’m”” m (ye-c”. Since the number of islands is 
equal to the number of times we exit a clone without 
detecting overlap, the expected number of islands is 
(&e-C* = Ne-‘” and we have shown (i). 

The above reasoning shows that the number of 
clones in an island follows a geometric distribution 
with stopping probability eVea. Thus, the probabil- 
ity that an island contains exactly j clones is 
(1 - e-c”)i-le-c”. Multiplying this probability by the 
expected number of islands gives (ii), while the mean 
of the distribution required by (iii) is ecu. 

To prove (iv), consider an island consisting of J 
clones, where J has the geometric distribution de- 
scribed in the last paragraph. Let Xi denote the length 
(in base pairs) of the coverage of the ith clone (1 G i 
<J-l). Since the ith clone either ends with the be- 
ginning of the next clone (if a new clone is encoun- 
tered within the first La bases) or is the last clone and 
contributes length L (if no new clone is encountered), 
then the random variable Xi has the distribution 

P (Xi = ??I) = a(1 - fX)m-l, for 1 d ?7I f LU 

P(Xi=T?l)=O, for LfJ<??Z<L 

and 
P (Xi = L) = (1 - (Y)LU* 

The expected length of an apparent island is then 
E(Zl<i<J Xi). Evaluating this expectation requires a 
bit of special theory. The random variable J is a stop- 
ping time for X1, XZ, * * * (that is, the event {J = j} is 
independent of Xj+i, Xj+z, * * l ). The expectation can 
then be evaluated by Wald’s equation (Ross, 1970, p. 
38): E( 2 1Gid Xi) = E(X)E(J). Straightforward calcu- 
lation shows that 

E(X) = L[( (1 - e”“)/c) - (1 - u)e-cu], 

and, since J has a geometric distribution, E(J) = 6”. 
Thus, (iv) follows directly. Statement (v) follows from 
the definition of u. For (vi), we require the probability 
that an ocean of length at least kL occurs at the end of 
an apparent island. This means that no new clones 
begin within BL + kL bases, and the probability of this 
event is (1 - (Y)‘~+~ m e-c(e+k). n 

Next, we develop a more precise version of Proposi- 
tion 2, which relaxes the condition that L and 8 are 
constant. Let the size of the cloned insert be chosen 
according to some probability distribution with mean 
E(L). The overlap between two clones necessary to 
detect overlap will be BE(L) base pairs, where B is 
chosen according to some probability distribution 
with mean E(8). The distribution of 0 is meant to 
model the fact that the fingerprints of certain clones 
make it easier to detect overlaps (i.e., by having more 
than the expected number of restriction fragments). 

Let G, N, and (Y be defined as before. Define the 
redundancy by c = E(L)N/G. It will become evident 
that (I = LIE(L) - e is the correct formula for U. 

The probability that overlap is not detected in a 
clone of length L is (1 - a) L-E(L)@ w  e-C(L’E(L)-e) = e-co. 
Let f(u) denote the probability density function of U. 

The average stopping probability is then le+f (a)&. 
Replacing e-“” by this integrated form gives the fol- 
lowing proposition, which generalizes Proposition 
l(i-iii) and provides a precise version of Proposi- 
tion 2. 

Proposition 2’. With assumptions and notation as 
above, 

(i) The expected number of apparent islands is 

N 
s 

e+‘f (a)&. 

(ii) The expected number of apparent islands con- 
sisting of j clones (j 2 1) is 

N[s eecuf (u)du)‘[ 1 - s eecuf (u&r’. 

(iii) The expected number of clones in an apparent 
island is 

lP 1-l 

IJ e-‘“f (u)da 
1 

. 

To justify the generalization of Proposition l(iv), 
we need to assume that the Xi, the coverage of the ith 
clone in base pairs, define statistically independent 
random variables. This was easily the case when L 
and B were constant and is a reasonable assumption 
here. Under this assumption, we have: 

(iv) The expected length in base pairs of an appar- 
ent island is 
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[ j- P”f (o)d+a-’ - ls Lae-“‘I(1 - e+)f (L, a) dLda] 

+ 
u 

L(1 - u)f(L, a)dLda, 

where f(L, a) is used to indicate the random nature of 
both L and 6. 

Although the precise results depend upon the dis- 
tributions of L and 8, some general conclusions can be 
drawn about the effect of letting L and 0 vary com- 
pared to fixing them at their average values. For ex- 
ample, Jensen’s inequality states that a convex func- 
tion of the average of a random variable is less than or 
equal to the average of that convex function evaluated 
at the random variable. Since e-“” is a convex func- 
tion, (i) implies that 

Avg number of islands > Ne-cE’“) = iVe-c(‘-E@)), 

and (iii) implies that 

Avg number of clones per island G ecECa) = ec(l-E(e)). 

In other words, using the average values of L and 0 
underestimates the number of islands and overesti- 
mates the number of clones in an island. 

Unfortunately, the effect on the number of contigs 
(islands consisting of two or more clones) cannot be 
determined via Jensen’s inequality, since the number 
of contigs is the difference between two convex func- 
tions, but not itself a convex function. 

An alternative approach to approximating (i), (ii), 
and (iii) is to expand the exponential functions into a 
Taylor series. Let Var(a) denote the variance of u. 
Expanding out to second-order terms yields 

(i’) Avg number of islands 
M Ne-cE’“‘{l + $cWar(a)}; 

(ii’) Avg number of contigs 
~ (~pW’ _ ~e-*W) 
+ Ncze-cE(u) { fVar(u)) { 1 - 2Ne-“x’” 
- ~Nf?e-cz~“~Var(u)}; 

(iii’) Avg number clones per island 
= feecE@(l + )c2Var(u))}-‘. 

It is clear from the Taylor expansion that ignoring 
the variability of L and 8 underestimates the number 
of islands and overestimates the number of clones in 
an island, as we noted from Jensen’s inequality. In- 
specting the second term in (ii‘), we see that the num- 
ber of contigs decreases under variation for small c 
and increases for large c. 

How large are these changes? Each effect involves 
Var (a). From the definition of u, we find that 

Var(u) = Var(L)/E(L)2 + Var(B), 

which is not likely to be very large. The first term is 
unlikely to contribute significantly, while Var(0) 
might be as large as 0.01. Still, multiplying by Nc2 in 
(ii’) increases the proportional effect. 

Finally, we turn to the properties of fingerprinting 
schemes asserted in Proposition 3. 

Proof of Proposition 3. If we require that the finger- 
prints of two clones share at least k out of an expected 
n fragments, then the expected required overlap 0 will 
clearly be about k/n. In fact, B is slightly less than k/n, 
because, with positive probability, the nonoverlapping 
portions may contribute matching fragments. One 
may adjust the value of 0 by simply accounting for the 
expected number of accidental matches among the 
fragments in the (1 - e) of the clones which do not 
overlap. However, the effect is small and the approxi- 
mation B = k/n will suffice for most purposes. 

To compute the probability of a false match being 
declared between two nonoverlapping clones, we first 
calculate the chance that two randomly chosen re- 
striction fragments have matching lengths. If the re- 
striction enzyme yields fragments with mean length 
X-l, then the restriction fragment lengths are well ap- 
proximated by a continuous exponential distribution 
with density f (x) = he-““, for x > 0. Suppose that we 
pick two fragments at random from such a distribu- 
tion, that the first fragment has length x chosen from 
the distribution f(x), and that the second fragment 
will match to within lOO@% provided that its length is 
between x(1 - 8) and ~(1 + /3). Thus, the chance that 
two random fragments match is 

m 

J [J 

.a+!% 
(Xe-Wy) Xe%x = 2a/(4 - f12) - 4 8. 

0 dl-B) 1 
To be more precise, we could use the actual upper and 
lower limits for fragment sizes resolvable on the gel as 
the limits for the first integral. However, the simple 
approximation $3 is usually precise enough for use. 

In comparing two fingerprints of type (a), there are 
n2 ways to pick one fragment from each fingerprint, 
when each fingerprint consists of n fragments. Thus, 
the expected number of matching pairs will be &n2. 
Since matches between any given pair of fragments 
are rare, it is plausible that the distribution of frag- 
ments will be roughly Poisson with mean f&n’. In 
fact, a proof can easily be obtained by using Proposi- 
tion 1 in Arratia et 61. (19&3), from which one can even 
derive a bound on the variation distance from the 
Poisson distribution. 

In comparing two fingerprints of type (b), the situa- 
tion is much more limited. The chance that two re- 
striction maps will match in exactly k fragments is 
roughly 4 (t/32)“, there being four orientations for the 
two maps and, once the orientations are fixed, each 
terminal k fragments in the two maps must match 
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exactly. The chance that the maps will match in at 
least k fragments is then 

4()/3Jk + 4(f/3z)k+1 

+ 4(fflz)k+2 + ’ l *  = 4(&3dV - f/u-’ 

= 4(fP2)k(l + f&2>. 

This completes the proof of Proposition 3. H 

6. CONCLUSION 

In the next few years, physical mapping projects of 
a number of organisms, including bacteria, fungi, fruit 
fly, mouse, and human, will likely be started. Many 
factors bear upon the design of such projects, only 
some of which are mathematical. Practical matters 
will be important, including the ability to streamline 
various laboratory procedures or the availability of 
chromosome-specific libraries. Biological consider- 
ations may also be significant, including the extent of 
highly repetitive DNA in a genome which may prove 
difficult to fingerprint uniquely or extreme differ- 
ences in the cloning efficiencies of various fragments. 

While recognizing these factors, it is clear that sig- 
nificant improvements in the efficiency of physical 
mapping projects can be made through the careful 
design of a fingerprinting scheme. The analysis and 
formulas here should be of some value in designing 
and monitoring the progress of physical mapping 
projects. 
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