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Observation sequence O = o1, ..., oT
and HMM model λ = (A,B, π)
Problem 1: The Evaluation Problem
Given: O, λ
Compute: P(O | λ) the probability of the observation
sequence given the HMM model
Problem 2: The Decoding Problem
Given: O, λ
Compute: A sequence of states Q for the observation
sequence O, Q = q1, ..., qT which optimally “explains” the
observation sequence.
Problem 3: The Learning Problem
Given: O
Compute: the parameters of an HMM model λ that
maximizes the probability P(O | λ) of observing O in the
model λ
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Problem 1

Observation sequence O = o1, ..., oT
and HMM model λ = (A,B, π)

Problem 1: The Evaluation Problem
Given: O, λ
Compute: P(O | λ) the probability of the observation
sequence given the HMM model
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Problem 2

Observation sequence O = o1, ..., oT
and HMM model λ = (A,B, π)

Problem 2: The Decoding Problem
Given: O, λ
Compute: A sequence of states Q for the observation
sequence O, Q = q1, ..., qT which optimally “explains” the
observation sequence.
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Problem 3

Observation sequence O = o1, ..., oT
and HMM model λ = (A,B, π)

Problem 3: The Learning Problem
Given: O
Compute: the parameters of an HMM model λ that
maximizes the probability P(O | λ) of observing O in the
model λ
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Elements of an HMM

1 N is the number of states S = {S1, ...,SN}.
The HMM process proceeds in discrete units of time,
t = 1, 2, 3, .....
The state at time t is denoted by qt .

2 M is the number of distinct observation symbols per state
V = v1, ..., vM

3 The transition probability distribution is given by A = {aij}
,where
aij = P[qt+1 = Sj | qt = Si ], 1 ≤ i , j ,≤ N

4 The observation symbols probability distribution in state j
is given by
B = {bj(k) = P[vk at time t | qt = Sj ],
1 ≤ j ≤ N, 1 ≤ k ≤ M

5 The initial state distribution is given by
πi = P[q1 = Si ], 1 ≤ i ≤ NSorin Istrail HMM: The Learning Problem
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Basic variables and probabilities

a sequence of states is Q = {q1, q2, ..., qT}
The probability of observing the sequence O in sequence
of states Q is

P(O | Q) =
T∏
i=1

P((oi | qi )

P(O | Q) = bq1(o1)...bqT (oT )

P(Q) = πq1aq1q2aq2q3 ...aqT−1qT

P(O,Q) = P(O | Q)P(Q)
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Basic variables and probabilities

the probability of observing O is

P(O) =
∑
allQ

P(O | Q)P(Q)

=
∑

q1...qT

πq1bq1(o1)aq1q2bq2(o2)...aqT−1qT bqT (oT )
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the Forward variable αt(i)

The Forward variable is defined by

αt(i) = P(o1o2...ot , qt = Si )

i.e., the probability of the prefix of the sequence of
observations o1...ot until time t and being in state Si at time t
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the Backward variable βt(i)

The Backward variable is defined by

βt(i) = P(ot+1ot+2...oT , qt = Si )

i.e., the probability of the suffix of the sequence of
observations ot+1ot=2...oT until end of sequence t and being
in state Si at time t
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the Delta variable δt(i)

The δt(i) variable is defined by

δt(i) = MAXq1...qt−1P(q1...qt−1qt , o1...ot−1ot)

i.e., the best score (highest probability) along the single path,
at time t which accounts for the first t observations and ends
in state Si
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The Reestimation Equations
The EM Algorithm
Baum’s Q-function and the Baum-Welch Theorem
The Stochastic Contraints
Lagrangean multipliers for the solution of the max-optimization

By far the most difficult of the three problems.

We want to adjust the parameters of the model λ = (A,B, π)
to maximize the probability of observing the sequence in the
model.

There is no exact analytical solution to this problem.

Both Problem 1 and Probem 2 have solutions given by
algorithms that we presented in CS 1810. Those algorithms
are exact and having computing time O(N2T ).
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We can choose λ′ = (A′,B ′, π′) such that P(O | λ′) is locally
maximal.

We use the Baum-Welch Algorithm. This is an iterative
algorithm. We iterate untill no improvement is possible. At
that point we reached a local maxima.
For this iteration we are using a method for reesttimation of
the HMM parameters.
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the Xi variable ξ(ij)

We first define a new variable ξ

ξt(i , j) = the probability of being in state Si at time t and
state Sj at time t + 1, given the model and the observation
sequence

ξt(i , j) = P(qt = Si , qt+1 = Sj | O, λ)
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From the definition of α and β variables we can write ξ as
follows:

ξt(i , j) =
αt(i)aijbj(ot+1)βt+1(j)

P(O | λ)

=
αt(i)aijbj(ot+1)βt+1(j)∑N

i ′=1

∑N
j ′=1 αt(i ′)ai ′j ′bj ′(ot+1)βt+1(j ′)
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The numerator is:

P(qt = Si , qt+1 = Sj ,O | λ)

and the denominator is the normalization factor to give the
probability:

P(O | λ) =
N∑

i ′=1

N∑
j ′=1

αt(i
′)ai ′j ′bj ′(ot+1)β(j ′)
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the Gamma variable γt(i)

As γt(i) is the probability of being in state Si at time t given
the observation sequence and model we have

γt(i) =
N∑
j=1

ξt(i , j)
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The expected number of times state Si is visited or
equivalently the expected number of transitions made from Si
is

T−1∑
t=1

γt(i) =

= the expected number of transitions from Si

Similarly,

T−1∑
t=1

ξt(i , j) =

= the expected number of transitions from Si to Sj
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Reestimating πi

A set of resonable reestimations for the parameters π,A,B are
given as follows:

π̄ = γ1(i), 1 ≤ i ≤ N

i.e., the expected frequency (number of times) in state Si at
time (t = 1) is = γ1(i)
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Reestimating A = {aij}

āij =

∑T−1
t=1 ξt(i , j)∑T−1
t=1 γt(i)

i.e., (expected number of transitions from Si to Sj)/ (exected
number of transitions from Si )
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Reestimating B = bj(k)

b̄j(k) =

∑T
t=1,ot=vk

γt(j)∑T
t=1 γt(j)

i.e., (expected number of times in state Sj observing
observation symbol vk)/ (expected number of times in state
Sj)
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Let the current model λ = (A,B, π)

Compute the above reestimation to get a new model
λ̄ = (Ā, B̄, π̄)

Then
1 λ is a local optimum, i.e., λ = λ̄, or
2 λ̄ is more likely that λ in the sense that

P(O | λ̄) > P(O | λ)

, i.e., we have found a new model λ̄ from which the
observation sequence is more likely to have been produced.
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The maximum likelihood HMM estimate

If we consider this reestimation, the final result of this
reestimation procedure is called a maximum likelihood
estimate of the HMM

The Forward-Backward algorithm leads to a local maxima
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Baum’s Q-function and the Baum-Welch Theorem

The reestimation formulas can be derived directly by
maximization (using constrained optimization) of Baum’s
auxiiary function:

Maxλ̄Q(λ, λ̄) = sumQP(Q | O, λ) log(P(O,Q | λ))

Baum-Welch Theorem:

Maxλ̄(Q(λ, λ̄)

implies that

P(O | λ̄) ≥ P(O | λ)
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The EM Algorithm

The reestimation procedure can be implemented as the
Expectation-Maximization (EM) Algorithm due to
Dempster, Laird and Rubin (1977)

The E-step (Expectation) is the calculation of the Baum’s
auxiliary function Q(λ, λ̄)

The M-step (Maximization) is the maximization of λ̄
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The stochastic contraints

The stochastic contraints for the model are automatically
satisfied at each iteration:

N∑
i=1

π̄i = 1, 1 ≤ j ≤ N

N∑
i=1

āij = 1, 1 ≤ j ≤ N

M∑
k=1

b̄j(k) = 1
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Viewing the parameter optimization problem as an
optimization problem

We can solve the parameter estimation problem as a
constraint optimization problem for

P(O | λ)

under the stochastic contraints by using the Lagrangean
multipliers method. It shows that P is maximized when the
following hold:
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Lagrangean multipliers for the solution of the optimization

πi =
πi

∂P
∂πi∑N

k=1 πk
∂P
∂πk

aij =
aij

∂P
∂aij∑N

k=1 aik
∂P
∂aik

bi (k) =
bi (k) ∂P

∂bi (k)∑M
l=1 bi (l)

∂P
∂bi (l)
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By appropriate manipulation of those formulas the right-hand
sides of each equaltion can be ready converted to be identical
to the right-sides of the EM algorithm reestimations.

This shows that the reestimation formulas are indeed exactly
correct at local optimal points of P(O | λ)
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