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The Basic Three HMM Problems

@ Observation sequence O = oy, ..., 0T
and HMM model A = (A, B, )

@ Problem 1: The Evaluation Problem
Given: O, A
Compute: P(O | A) the probability of the observation
sequence given the HMM model

@ Problem 2: The Decoding Problem
Given: O, A
Compute: A sequence of states @ for the observation
sequence O, Q@ = g1, ..., g7 which optimally “explains” the
observation sequence.

@ Problem 3: The Learning Problem
Given: O
Compute: the parameters of an HMM model A that
maximizes the probability P(O | A) of observing O in the
model A



The Basic Three HMM Problems

Problem 1

@ Observation sequence O = oy, ..., 0T
and HMM model A = (A, B, )

@ Problem 1: The Evaluation Problem
Given: O, A
Compute: P(O | A) the probability of the observation
sequence given the HMM model
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The Basic Three HMM Problems

Problem 2

@ Observation sequence O = oy, ..., 0T
and HMM model A = (A, B, )

@ Problem 2: The Decoding Problem
Given: O, A
Compute: A sequence of states Q for the observation
sequence O, Q@ = g1, ..., g7 which optimally “explains” the
observation sequence.
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The Basic Three HMM Problems

Problem 3

@ Observation sequence O = oy, ..., 0T
and HMM model A = (A, B, )
@ Problem 3: The Learning Problem
Given: O
Compute: the parameters of an HMM model A that

maximizes the probability P(O | A) of observing O in the
model A
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The Basic Three HMM Problems

Elements of an HMM

@ N is the number of states S = {51, ..., Sy }.
The HMM process proceeds in discrete units of time,

The state at time t is denoted by g;.

@ M is the number of distinct observation symbols per state
V = Vi,..., VM

© The transition probability distribution is given by A = {a;;}
~where
a3 =Plgr1=51q=S5],1<i,j,<N

© The observation symbols probability distribution in state j
is given by
B = {bj(k) = P[Vk at time t ‘ qr = Sj],
1<j<N,1<k<M

© The initial state distribution is given by
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HMM: basic variables and probailities

Basic variables and probabilities

e a sequence of states is Q = {q1,q2,...., 97}

@ The probability of observing the sequence O in sequence
of states Q is

T

P(O1Q)=]]P((oi | a)

i=1

]

P(O | Q) = bg,(01)...bg, (07)
]

P(Q) = Tq1dq1g29q2q3+--997_19T
]

P(0,Q) = P(O| Q)P(Q)
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HMM: basic variables and probailities

Basic variables and probabilities

@ the probability of observing O is

P(O)=)_P(O]|Q)P(Q)
allQ

= Z T g, bg,(01)ag, g, b, (02)---agr 147 bgr (0T)

q1---qT1
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HMM: basic variables and probailities

the Forward variable o (/)

@ The Forward variable is defined by

°
a(i) = P(o102...0t,q: = S;)

@ i.e., the probability of the prefix of the sequence of
observations 05...0; until time t and being in state S; at time t
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HMM: basic variables and probailities

the Backward variable (3,(/)

@ The Backward variable is defined by
o
Be(i) = P(ot+10t42...0T,9r = Si)
@ i.e., the probability of the suffix of the sequence of

observations 0;410:—5...01 until end of sequence t and being
in state S; at time t
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HMM: basic variables and probailities

the Delta variable §,(1)

@ The 4:(i) variable is defined by
°
0¢(i) = MAXq,..q. 1 P(q1...9t—1G¢, 01...0¢—10¢)

@ i.e., the best score (highest probability) along the single path,
at time t which accounts for the first t observations and ends
in state S;
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Solution to Problem 3: The Expectation-Maximization Algorithm L . . R
Lagrangean multipliers for the solution of the max-optimization

o By far the most difficult of the three problems.

e We want to adjust the parameters of the model A = (A, B, )
to maximize the probability of observing the sequence in the
model.

@ There is no exact analytical solution to this problem.

@ Both Problem 1 and Probem 2 have solutions given by
algorithms that we presented in CS 1810. Those algorithms
are exact and having computing time O(N2T).
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ithm
on and the Baum-Welch Theorem
The Stochastic Contraints
Lagrangean multipliers for the solution of the max-optimization

Solution to Problem 3: The Expectation-Maximization Algorithm

@ We can choose N = (A', B, 7’) such that P(O | X') is locally
maximal.
o We use the Baum-Welch Algorithm. This is an iterative

algorithm. We iterate untill no improvement is possible. At
that point we reached a local maxima.

For this iteration we are using a method for reesttimation of
the HMM parameters.
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ithm
on and the Baum-Welch Theorem

Solution to Problem 3: The Expectation-Maximization Algorithm Vi Siedigsie Ceetis

the Xi variable £(if)

Lagrangean multipliers for the solution of the max-optimization

@ We first define a new variable &

@ &:(i,j) = the probability of being in state S; at time t and
state S; at time t + 1, given the model and the observation
sequence

° ft(iaj) = P(Qt =5,qt41 = Sj | Oa)‘)
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The Reestimation Equations

The EM Algorithm

Baum’s Q-function and the Baum-Welch Theorem

The Stochastic Cc ints

Lagrangean multipliers for the solution of the max-optimization

Solution to Problem 3: The Expectation-Maximization Algorithm

@ From the definition of o and [ variables we can write £ as
follows:

a¢(i)aijbj(or+1)Be+1(j)
P(O [ A)

at(i)ajjbj(0t41)Be+1()
Yoy SN eeli)aije b (0 1) Bea ()

&elinJ) =
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The Reestimation Equations

The EM Algorithm

Baum’s Q-function and the Baum-Welch Theorem

The Stochastic Cc ints

Lagrangean multipliers for the solution of the max-optimization

Solution to Problem 3: The Expectation-Maximization Algorithm

@ The numerator is:
°

P(g: = Si,qe41 = 5, O | A)

@ and the denominator is the normalization factor to give the
probability:

N N

(O ‘ )\ Z Z@t(’ )alj’b (Ot+1)6( )

i'=1j'=1

Sorin Istrail HMM: The Learning Problem



The Reestimation Equations

The EM Algorithm

Baum’s Q-function and the Baum-Welch Theorem
The Stochastic Cc ints

Solution to Problem 3: The Expectation-Maximization Algorithm . . . R
Lagrangean multipliers for the solution of the max-optimization

the Gamma variable ~;(/)

@ As (i) is the probability of being in state S; at time t given
the observation sequence and model we have

N

Ve(i) = Z 1)

Jj=1
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on and the Baum-Welch Theorem
The Stochastic Contraints
Lagrangean multipliers for the solution of the max-optimization

Solution to Problem 3: The Expectation-Maximization Algorithm

@ The expected number of times state S; is visited or
equivalently the expected number of transitions made from 5;

is
°

T-1

V(i) =
t=1
= the expected number of transitions from S;

e Similarly,
°

T-1
> &g =
t=1
= the expected number of transitions from S; to S;
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The Reestimation Equations

The EM Algorithm

Baum’s Q-function and the Baum-Welch Theorem
The Stochastic Cc ints

Solution to Problem 3: The Expectation-Maximization Algorithm . . . R
Lagrangean multipliers for the solution of the max-optimization

Reestimating 7;

@ A set of resonable reestimations for the parameters 7, A, B are
given as follows:

F=m(i),1<i<N

@ i.e., the expected frequency (number of times) in state S; at
time (t =1) is = v1(/)
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The Reestimation Equations
The EM Algorithm
Baum’s Q-function and the Baum-Welch Theorem
. . N . The Stochastic Cc ints
Solution to Problem 3: The Expectation-Maximization Algorithm 1€ STOCNAsHIC L€ s

Lagrangean multipliers for the solution of the max-optimization

Reestimating A = {a;}

G = Z ft(’ J)
T )

, (expected number of transitions from S; to S;)/ (exected
number of transitions from S;)

9 ie.
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The Reestimation Equations
The EM Algorithm
Baum’s Q-function and the Baum-Welch Theorem
. . N . The Stochastic Cc ints
Solution to Problem 3: The Expectation-Maximization Algorithm 1€ STOCNAsHIC L€ s

Lagrangean multipliers for the solution of the max-optimization

Reestimating B = b;(k)

T .
E(k) _ Zt:l,ot:vk ’)/t(-l)
i\K) = T :
2 e=17tU)
@ i.e., (expected number of times in state S; observing

observation symbol v)/ (expected number of times in state
5;)
d
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The Reestimation Equations

The EM Algorithm

Baum’s Q-function and the Baum-Welch Theorem

The Stochastic Cc ints

Lagrangean multipliers for the solution of the max-optimization

Solution to Problem 3: The Expectation-Maximization Algorithm

o Let the current model X = (A, B, )

o Compute the above reestimation to get a new model
A= (A B,T)

@ Then

(1) {\ is a local optimum, i.e., A = A, or
@ ) is more likely that A in the sense that

P(O|X) > P(O]|A)

, i.e., we have found a new model X\ from which the
observation sequence is more likely to have been produced.
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The Reestimation Equations
The EM Algorithm
Baum’s Q-function and the Baum-Welch Theorem

Solution to Problem 3: The Expectation-Maximization Algorithm it Sikodierie CanizEis

Lagrangean multipliers for the solution of the max-optimization

The maximum likelihood HMM estimate

@ |f we consider this reestimation, the final result of this
reestimation procedure is called a maximum likelihood
estimate of the HMM

@ The Forward-Backward algorithm leads to a local maxima
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Lagrangean multipliers for the solution of the max-optimization

Baum’'s Q-function and the Baum-Welch Theorem

@ The reestimation formulas can be derived directly by
maximization (using constrained optimization) of Baum'’s
auxiiary function:

Max; Q(\, \) = sumqP(Q | O, \)log(P(O, Q | \))

@ Baum-Welch Theorem:

Maxs (Q(\, M)

implies that

PO X) = PO )
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Baum’'s Q-function and the Baum-Welch Theorem

Solution to Problem 3: The Expectation-Maximization Algorithm it Sikodierie CanizEis

The EM Algorithm

Lagrangean multipliers for the solution of the max-optimization

@ The reestimation procedure can be implemented as the
Expectation-Maximization (EM) Algorithm due to
Dempster, Laird and Rubin (1977)

o The E-step (Expectation) is the calculation of the Baum's
auxiliary function Q(\, A)

o The M-step (Maximization) is the maximization of A
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eestimation Equations
The EM Algorithm

Baum’s Q-function and the Baum-Welch Theorem
The Stochastic Contraints

Solution to Problem 3: The Expectation-Maximization Algorithm . . . R
Lagrangean multipliers for the solution of the max-optimization

The stochastic contraints

@ The stochastic contraints for the model are automatically
satisfied at each iteration:

o
N
Y A=1L1<j<N
i=1

(]
N
Za‘,j_1,1<J<N
i=1

o
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ithm
Baum’s Q-function and the Baum-Welch Theorem
The Stochastic Contraints

Solution to Problem 3: The Expectation-Maximization Algorithm - . . R
Lagrangean multipliers for the solution of the max-optimization

Viewing the parameter optimization problem as an
optimization problem

@ We can solve the parameter estimation problem as a
constraint optimization problem for

P(O]A)

under the stochastic contraints by using the Lagrangean
multipliers method. It shows that P is maximized when the
following hold:
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The Reestimation Equations

Baum’s Q-function and the Baum-Welch Theorem
The Stochastic Contraints

Solution to Problem 3: The Expectation-Maximization Algorithm o . L
Lagrangean multipliers for the solution of the max-optimization

Lagrangean multipliers for the solution of the optimization

° oP
7T’(%r,
Ti= =N ap
Zk 1 kank
° oP
aijaT,,
A= SN - P
Zk 1 ’kaak
o

0P
bi(k) 5,8y

bi(k) =
Sy bi() 00T}
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ithm
on and the Baum-Welch Theorem
The Stochastic Contraints
Lagrangean multipliers for the solution of the max-optimization

Solution to Problem 3: The Expectation-Maximization Algorithm

@ By appropriate manipulation of those formulas the right-hand
sides of each equaltion can be ready converted to be identical
to the right-sides of the EM algorithm reestimations.

@ This shows that the reestimation formulas are indeed exactly
correct at local optimal points of P(O | A)
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