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Molecular techniques allow the survey of a large number of linked polymorphic loci in random samples from 
diploid populations. However, the gametic phase of haplotypes is usually unknown when diploid individuals are 
heterozygous at more than one locus. To overcome this difficulty, we implement an expectation-maximization 
(EM) algorithm leading to maximum-likelihood estimates of molecular haplotype frequencies under the assumption 
of Hardy-Weinberg proportions. The performance of the algorithm is evaluated for simulated data representing 
both DNA sequences and highly polymorphic loci with different levels of recombination. As expected, the EM 
algorithm is found to perform best for large samples, regardless of recombination rates among loci. To ensure 
finding the global maximum likelihood estimate, the EM algorithm should be started from several initial conditions. 
The present approach appears to be useful for the analysis of nuclear DNA sequences or highly variable loci. 
Although the algorithm, in principle, can accommodate an arbitrary number of loci, there are practical limitations 
because the computing time grows exponentially with the number of polymorphic loci. 

Introduction 

With the advent of molecular techniques, the survey 
of polymorphism at several loci or nucleotide sites on 
the same chromosome has become common. Restriction 
enzyme or DNA sequence studies now provide data on 
dozens or hundreds of contiguous nucleotide sites, many 
of which are expected to be polymorphic. This poly- 
morphism is often desired in population studies, allowing 
the determination of genetic affinities among popula- 
tions or groups of populations (Avise 1994), but it is 
often a problem for interpreting individual genotypes 
because the gametic phase of multiple-site heterozygous 
diploids cannot be determined. Different strategies for 
inferring haplotypes may be used to partially overcome 
this difficulty. One possibility is that the multiple-site 
heterozygotes can be eliminated from the analysis, 
keeping only the homozygotes and the single-site het- 
erozygote individuals, but this approach might lead to 
a possible bias in the sample composition and the un- 
derestimation of low-frequency haplotypes. Another 
possibility is that single chromosomes can be studied 
independently, for example, by asymmetric PCR am- 
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plification (Newton et al. 1989; Wu et al. 1989) or by 
isolation of single chromosome by limit dilution followed 
by PCR amplification (Ruano et al. 1990). Or multiple- 
site haplotypes can sometimes be inferred using genea- 
logical information in families (Perlin et al. 1994), but 
then some members of the families must be ignored to 
get rid of redundant information. These approaches are 
thus not entirely satisfying either because of their tech- 
nical complexity, the additional cost they entail, their 
lack of generalization at a large scale, or the possible 
biases they introduce. 

To overcome these difficulties, Clark (1990) intro- 
duced an algorithm based on Hardy-Weinberg equilib- 
rium to infer the phase of PCR-amplified DNA geno- 
types. The principle is to start filling a preliminary list 
of haplotypes present in the sample by examining un- 
ambiguous individuals, that is, the complete homozy- 
gotes and single-site heterozygotes. Then other individ- 
uals in the sample are screened for the possible 
occurrence of previously recognized haplotypes. For each 
positive identification, the complementary haplotype 
was added to the list of recognized haplotypes, until the 
phase information for all individuals is either resolved 
or identified as unresolved. As discussed by Clark ( 1990), 
several problems can arise with this procedure, including 
the possibility of never being able to start the iterative 
algorithm because of the absence of any unambiguous 
individuals in the sample. Although the probability of 
such an event was assumed to be small for realistic sam- 
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ples of DNA sequences (Clark 1990), this problem re- 
mains. Moreover, Clark’s ( 1990) method assigns a single 
genotype to each multiheterozygous individual, whereas 
several genotypes are possible when there are more than 
one heterozygous site. The assigned genotype may then 
depend on the order in which individuals are listed in 
the sample. 

Here we take a different approach and place the 
problem of estimating haplotype frequencies in the gen- 
eral framework of the EM algorithm, formalized by 
Dempster et al. (1977). Hill (1974) suggested using the 
equivalent of the EM algorithm with two-locus, two- 
allele systems, and Weir (1990) noted that the EM al- 
gorithm could be adapted to the problem of inferring 
phase relationships in haplotypes (see also Elandt-John- 
son 197 1; Piazza 1975; Yasuda 1978; Imanishi et al. 
199 1). We will first describe the EM algorithm as it ap- 
plies to the problem of inferring haplotype frequencies 
under that assumption of Hardy-Weinberg equilibrium 
and then test its performance using simulated data. 

Deriving the Likelihood of Haplotype Frequencies 

Here, we will call a phenotype a multilocus genotype 
whose haplotypic phase is unknown a priori. A multi- 
locus genotype defined as a particular combination of 
two multilocus haplotypes will be called a genotype 
hereafter. The probability of a sample of n individuals 
conditioned by the phenotype frequencies PI, P2, . . . , 
P, (i.e., the likelihood of the data given the parameters) 
is given by the multinomial probability, 

P(sample[P1, P2,. . . , Pm) 

n! = 
nl!nz! . . . n,! 

x P”’ x P”2 x 1 2 . . . P~,m, (1) 

where m different phenotypes are observed with counts 
nr, n2, . . . , n,. 

The number of genotypes (Cj) leading to the jth 
phenotype is a function of the number of heterozygous 
loci Sj, 

Cj = 2’13 Sj > 0. 
(2) 

Cj= 1, Sj = 0. 

Under the assumption of random mating, the 
probability Pj of the jth phenotype is given by the sum 
of the probabilities of each of the possible Cj genotypes, 

Pj = 5 P(genotype i) = 3 P(hkhl), 
i=l i=l 

(3) 

where P(hkhJ is the probability of the ith genotype made 
up of haplotypes k and 1, P(hkhl) = pi if k = I and P(hkhl) 
= 2pkpI if k # I, where pk and pl are the population 
frequencies of the kth and the Ith haplotypes. Substi- 
tuting equation (3) in equation (I), we obtain the prob- 
ability of the sample as a function of the unknown hap- 
lotype frequencies. Therefore, the likelihood of the 
haplotype frequencies given phenotypic counts is 

whereph = 1 -pl -p2 -. . . -phml,andal isaconstant 
incorporating the multinomial coefficient. 

In principle, the maximum likelihood (ML) esti- 
mates of haplotype frequencies could be found analyt- 
ically by solving a set of h - 1 equations involving first 
partial derivatives of the logarithm of the likelihood, 
generally called scores. If Ut represents the score for the 
t th haplotype, 

u t _ 7 _ 5 nj a4, 
t j=l pj apt (5) 

then setting the scores for the h - 1 functionally inde- 
pendent haplotypes to zero and solving the resulting set 
of equations would lead to the ML estimates, but this 
procedure is tedious when h is large, and the number h 
is often unknown a priori. Alternative procedures in- 
volving numerical iterations have been developed. 
Among those, when the data are incomplete in the sense 
that there are more data categories (genotypes) than can 
be distinguished (phenotypes), Dempster et al. (1977) 
have formalized the use of an EM algorithm to estimate 
the haplotype frequencies that maximize the sample 
probability. In this article, we show how the EM algo- 
rithm can be extended to an arbitrary number of loci 
with an arbitrary number of alleles, allowing the treat- 
ment of DNA sequence and highly variable loci data. 

The EM Algorithm 

The EM algorithm is an iterative method to com- 
pute successive sets of haplotype frequencies p1 , p2, . . . , 
ph, starting with initial arbitrary values p\‘), pi’), . . . , 

ph * (‘I These initial values are used as if they were the 
unknown true frequencies to estimate genotype fre- 
quencies P(hkhJ(‘) (the expectation step). These expected 
genotype frequencies are used in turn to estimate hap- 
lotype frequencies at the next iteration PI’), py), . . . , 
p(hl) (the maximization step), and so on, until convergence 
is reached (i.e., when the changes in haplotype frequency 
in consecutive iterations are less than some small value). 
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of performance by comparing the actual values for the 
simulated data (denoted by the index 0) to ML estimates. 

Haplotype frequency estimations.-To examine 
how close the estimated frequencies are to the actual 
frequencies, we use the similarity index IF of Renkonen 
(1938), defined as the proportion of haplotype frequen- 
cies in common between estimated and true frequencies, 

IF= i min(ji,poi) = 1 -i i lpAj-pC)il, (10) 
i= 1 L i=l 

where the G are the estimated frequencies and the pois 
are the true simulated frequencies. Note that IF may also 
be considered as one minus half the sum of absolute 
differences between estimated and true frequencies. It 
varies between zero, when true haplotypes have esti- 
mated frequencies tending to zero, and one, when ob- 
served and estimated frequencies are identical. This in- 
dex gives more weight to the high-frequency haplotypes. 

Haplotype idenhjkation. -Because the algorithm 
begins by identifying all possible combinations of hap- 
lotypes, the set of true haplotypes will necessarily be in- 
cluded in the set of estimated haplotypes. We will con- 
sider that a given haplotype is identified as being present 
in the true sample if its estimated frequency is above the 
threshold value of 1/(2n). We can then define an index 
of performance in terms of haplotype identification: 

zH = 2(y _t~issed) , 

true est 
(11) 

where ktrue is the number of haplotypes in the true sam- 
ple, kest is the number of estimated haplotypes with fre- 
quency above the threshold, and kmisxd is the number 
of true haplotypes not identified in the sample. The value 
of ZH can vary between one, when the identified haplo- 
types are exactly those present in the true sample, to 
zero when none of the true haplotypes has been iden- 
tified. 

EM Algorithm Convergence 

Although an EM algorithm will always climb the 
multidimensional likelihood surface, there is no guar- 
antee that the surface is convex or that it is not nearly 
flat with a narrow isolated peak. In other words, de- 
pending on the initial conditions, the EM algorithm may 
not find the true ML solution because it can lead to an 
optimum that may not be the global optimum, or the 
iterative process may stop before reaching the optimum. 

We have investigated for the possible occurrence 
of multiple peaks in the likelihood surface by applying 
the EM algorithm to our simulated data sets starting 
from different initial conditions and examining whether 

convergence to the same solution occurs. As computing 
time would have been prohibitive if this strategy had 
been used for all data sets examined here, we have ap- 
plied it to a few arbitrarily chosen test cases for the highly 
variable loci. For each test case shown in table 1, 100 
runs of the EM algorithm were performed. Each run 
was done with initial conditions obtained by assigning 
random but nonzero frequencies to all possible haplo- 
types in the sample. For each run, the final log likelihood 
was recorded as well as the performance index IF. To 
compare these results to those obtained with initial con- 
ditions using equation (6), each data set was also ana- 
lyzed assuming equal initial haplotype frequencies. 

Results 

The two algorithm performance indices are plotted 
against the number of polymorphic sites found in sam- 
ples of different sizes in figure 1. The general trends ap- 
pear similar for both DNA and highly variable data. The 
EM algorithm seems almost insensitive to the recom- 
bination rate but performs much better for the largest 
sample sizes. For DNA data, although the performance 
is comparable when there are fewer than five poly- 
morphic sites in small and large samples, the decay in 
both haplotype identification and frequency estimation 
is rapid in smaller samples. Note that more than 90% 
of haplotype frequencies are correctly estimated with 
the larger sample size. For highly variable loci, the av- 
erage performance of the EM algorithm is consistently 
worse for samples of 25 than for samples of 100 indi- 
viduals, even when only two polymorphic loci are con- 
sidered. The ability of the EM algorithm to infer the 
correct haplotype frequencies in large samples is high 
(above 90%) for all cases. This is quite remarkable be- 
cause usually more than 95% of the individuals had dif- 
ferent phenotypes when eight loci were considered. 

The results presented in table 1 suggest either that 
the likelihood surface has multiple peaks or that it has 
large flat areas causing the EM algorithm to stop at dif- 
ferent points, even though the same restrictive stopping 
criterion (epsilon = 10P7) was used in all instances. This 
effect appears more pronounced for small sample sizes, 
as the coefficient of variations of final log likelihood 
reached from initial random frequencies are much 
smaller for large sample sizes. Considering equal hap- 
lotype frequencies as a random initial condition, one 
sees that the resulting log likelihoods can be considerably 
smaller than the observed maximum when only 25 in- 
dividuals are considered, whereas they are always larger 
than the mean and not far from the maximum when 
data for 100 individuals are available. This suggests first 
that a great many initial conditions should be tried for 
small sample sizes and second that the difference in EM 
algorithm efficiency observed in figure 1 between small 
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Table 1 
Comparison of Estimated Haplotype Frequencies Obtained from Different Initial Conditions 

Sample 
Size 

No. of 
Polymorphic 

Loci Mean log La Maximum log Lb 
Equal Haplotype 

log LC 

IF Associated 
with 

Maximum 
log L 

Maximum 
I, Valued 

IF Associated 
with Equal 
Haplotypese 

25 2 -59.1620402 -59.1620400 -59.855 18732 1 .ooooo 1 .ooooo 0.98000 
(0.0011716) 

25 3 -96.5 177648 -93.8465002 -95.23279525 0.92000 0.96000 0.85000 
(0.0230308) 

25 4 -95.0487869 -9 1.9369577 -97.482 13574 0.88000 0.88000 0.85000 
(0.02649 14) 

25 5 -90.7776002 -88.65467 18 - 105.29020472 0.68000 0.68000 0.61250 
(0.0203 197) 

100 2 -253.8528369 -253.7976769 -253.79768073 0.96198 0.96198 0.96198 
(0.00072 17) 

100 3 -303.5804950 -302.8596 190 -302.85962398 0.99000 0.99000 0.98000 
(0.0023830) 

100 4 -327.73 13520 -326.83 17555 -326.83 175863 0.98000 0.98000 0.96000 
(0.003 1837) 

100 5 -400.973423 1 -398.3952436 -400.82 169383 0.8957 1 0.90873 0.88214 
(0.0048590) 

No?%.-The haplotypes were generated as described in the text for highly variable loci data with 20 possible alleles per locus, no recombination, and 8 = 10 
per locus. 

a Mean final log likelihoods of haplotype frequencies obtained from 100 replicates with random initial haplotype frequencies. The coefficient of variation is 
shown within parentheses. 

b Maximum value among the 100 replicates. 
c Final log likelihood obtained by assuming identical initial frequencies for all haplotypes, as implied from eq. (6). 
d Among the 100 replicates with random initial haplotype frequencies. 
c lF efficiency index obtained for the case where all haplotypes have identical initial frequencies. 

and large samples could certainly be attenuated by using 
several initial conditions and picking up the global ML 
solution. The last three columns in table 1 show that 
higher log likelihoods generally lead to better estimation 
of true sample frequencies, although the best estimates 
are not always obtained for the highest likelihoods. This 
may be due to the fact that Hardy-Weinberg equilibrium 
may not be met in some samples. 

Discussion 
EM Algorithm Predicted Performances 

The present algorithm is based on the assumption 
of random union of gametes (or haplotypes), and any 
departure from Hardy-Weinberg (H W) equilibrium may 
lead to biased estimates of haplotype frequencies and 
indices based on these frequencies. Besides the assump- 
tion of HW equilibrium, information redundancy in the 
form of multiple copies of the same haplotype in the 
data set is required for the algorithm to work properly. 
Thus, the EM algorithm is expected to perform better 
in large samples than in small ones, both because HW 
proportions will be more closely achieved and because 
the number of new haplotypes is not expected to increase 
linearly with sample size. 

Note that no assumption is made about linkage 
equilibrium among sites in the EM algorithm. However, 
the present approach is most useful in the presence of 
linkage disequilibrium, because if there is complete 
equilibrium alleles would be randomly assigned to pos- 
sible haplotypes and haplotype frequencies could be ob- 
tained from allelic frequencies. For closely linked sites, 
mutation rates and population demographic history will 
determine how much linkage disequilibrium one would 
expect. For example, in a sample from a rapidly ex- 
panding population, the correlation between haplotypes 
is expected to be quite low (Slatkin and Hudson 199 1; 
Slatkin 1994). 

Fit of the ML Solutions to the Actual Data 

The likelihood is guaranteed to increase under EM 
algorithm, but the result may be a local and not a global 
maximum in some cases (see table 1; Weir 1990, p. 64). 
To avoid such situations, one should try several sets of 
initial haplotype frequencies. In the sample cases shown 
in figure 1, we have initially assumed that all genotypes 
within an individual were equally frequent. Results 
shown in table 1 suggest that larger likelihoods and better 
performance indices would have been obtained under 
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FIG. l.-Linear regressions of EM algorithm performance indices IF and ZH against the number of polymorphic sites in the samples for 
simulated DNA and highly variable loci. Samples of n = 25 and n = 100 individuals were considered; R = 4Nr is the recombination parameter 
between adjacent sites or loci. For highly variable loci, each locus was polymorphic in all samples, and the regression lines are build on 100 
replicates for each given number of loci considered. For DNA data, only a fraction of the sites were polymorphic in each sample, and the 
number of polymorphic sites could vary between replicates of the same parameter’s conditions. 

different initial conditions, especially for small sample 
sizes. With this enhancement, the conclusions drawn 
from figure 1, such as the insensitivity of the algorithm 
to moderate recombination rates and the better perfor- 
mance of the algorithm in large samples, should remain 
true. We recommend using several initial conditions to 
ensure the best estimate possible of haplotype frequen- 
cies. 

Improvement over Other Estimation Procedures 

As stated above, the ML treatment presented here 
elaborates on Clark’s ( 1990) approach for inferring DNA 
haplotypes. Instead of finding only the list of possible 
haplotypes, our approach has the advantage of estimating 
haplotype frequencies, even when there are no homo- 
zygotes or single-site heterozygotes in the sample or when 

all individuals have different phenotypes. Although 
Clark’s algorithm is much faster in situations when there 
are a large number of polymorphic loci in the sample, 
it assigns a single genotype to each individual, an as- 
signment that may depend on the order in which indi- 
viduals are listed in the sample. The EM algorithm is 
not sensitive to the ordering in the data. 

The EM algorithm extends conventional frequency 
estimation or gene-counting procedures to a large num- 
ber of loci, whereas procedures based on analytical so- 
lutions (Elandt-Johnson 197 1; Hill 1974; Imanishi et al. 
199 1) are limited to a few loci. In practice, the number 
of loci that can be handled is limited by the amount of 
polymorphism per locus and by computing time, be- 
cause the number of possible genotypes grows exponen- 
tially with the number of polymorphic sites. Roughly a 
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billion genotypes would have to be examined for an in- 
dividual heterozygous at 3 1 sites, and thus the calcula- 
tions would reach the limits of computing capacity of 
midsized work stations. But with current estimates of 
DNA variability in mammals where two homologous 
nucleotides differ on the average every 200 bp (Nei and 
Hughes 199 1 ), coding sequences of about 6,000 nucleo- 
tides could be accommodated by the present algorithm, 
although our current implementation can only handle 
nuclear DNA sequences up to a length of 1,000 nucleo- 
tides. The good results obtained for highly variable loci 
suggest that the present algorithm could be successfully 
applied to microsatellite data and used to identify the 
haplotypes formed by the combination of microsatellite 
patterns at several linked loci. The EM algorithm can 
in principle also be applied to any other multilocus hap- 
lotypes, like RFLP haplotypes, molecular haplotypes 
derived from oligotyping techniques, or serologically 
derived haplotypes. 

Acknowledgments 

We thank Rosalind Harding for initially raising the 
question, Peter Smouse for his suggestions on the ML 
approach, and Andre Langaney for his help throughout 
this study. L.E. was supported by Swiss National Science 
Foundation grants no. 3 l-39847.93 and 32.3782 1.93, 
and MS. was supported in part by National Institutes 
of Health grant GM40282. A computer program 
(MLHAPFRE) to compute multilocus haplotype fre- 
quencies using the present approach is available from 
L.E. on request. 

LITERATURE CITED 

AWE, J. C. 1994. Molecular markers, natural history and evo- 
lution. Chapman & Hall, New York. 

CEPPELLINI, R., M. SINISCALCO, and C. A. B. SMITH. 1955. 
The estimation of gene frequencies in a random mating 
population. Ann. Hum. Genet. 20:97- 115. 

CLARK, A. G. 1990. Inference of haplotypes from PCR-am- 
plified samples of diploid populations. Mol. Biol. Evol. 7: 
111-122. 

DEMPSTER, A. P., N. M. LAIRD, and D. B. RUBIN. 1977. Max- 
imum likelihood from incomplete data via the EM algo- 
rithm. J. R. Stat. Sot. 39:1-38. 

ELANDT-JOHNSON, R. C. 197 1. Probability models and statis- 
tical methods in genetics. Wiley, New York. 

HILL, W. G. 1974. Estimation of linkage disequilibrium in 
randomly mating populations. Heredity 33:229-239. 

IMANISHI, T., T. AKAZA, A. KIMURA, K. TOKUNAGA, and T. 
GOJOBORI. 199 1. Estimation of allele and haplotype fre- 

quencies for HLA and complement loci. Pp. 76-79 in K. 
TSUJI, M. AIZAWA, and T. SASAZUKI, eds. HLA 199 1: pro- 
ceedings of the Eleventh International Histocompatibility 
Workshop and Conference. Vol. 1. Oxford University Press, 
New York. 

NEI, M., and A. L. HUGHES. 199 1. Polymorphism and evo- 
lution in the major histocompatibility complex loci in 
mammals. Pp. 222-247 in R. K. SELANDER, A. G. CLARK, 
and T. S. WHITTAM, eds. Evolution at the molecular level. 
Sinauer, Sunderland, Mass. 

NEWTON, C. R., A. GRAHAM, L. E. HEPTINSTALL, S. J. Pow- 
ELL, C. SUMMERS, N. KALSHEKER, J. C. SMITH, and A. F. 
MARKHAM. 1989. Analysis of any point mutation in DNA: 
the amplification refractory mutation system (ARMS). Nu- 
cleic Acids Res. 17:2503-25 16. 

PERLIN, M. W., M. B. BURKS, R. C. HOOP, and E. C. HOFF- 
MAN. 1994. Toward fully automated genotyping: allele as- 
signment, pedigree construction, phase determination, and 
recombination detection in Duchenne muscular distrophy. 
Am. J. Hum. Genet. 55:777-787. 

PIAZZA, A. 1975. Haplotypes and linkage disequilibria from 
three-locus phenotypes. Pp. 923-927 in F. KISSMEYER- 
NIELSEN, ed. Histocompatibility testing 1975. Munskgaard, 
Copenhagen. 

RENKONEN, 0. 1938. Statisch-okologische Untersuchungen 
iiber die terrestiche Kaferwelt der finnishen Bruchmoore. 
Ann. Zool. Sot. Bot. Fenn. Vanamo. 6: l-23 1. 

RUANO, G., K. K. KIDD, and J. C. STEPHENS. 1990. Haplotype 
of multiple polymorphisms resolved by enzymatic ampli- 
fication of single DNA molecules. Proc. Natl. Acad. Sci. 
USA 87:6296-6300. 

SLATKIN, M. 1994. Linkage disequilibrium in growing and 
stable populations. Genetics 137:33 l-336. 

SLATKIN, M., and R. R. HUDSON. 199 1. Pairwise comparisons 
of mitochondrial DNA sequences in stable and exponen- 
tially growing populations. Genetics 129:5 5 5-562. 

SMITH, C. A. B. 1957. Counting methods in genetical statistics. 
Ann. Hum. Genet. 21:254-276. 

WEIR, B. S. 1990. Genetic data analysis. Methods for discrete 
population genetic data. Sinauer, Sunderland, Mass. 

Wu, D. Y., L. UGOZZOLI, B. K. PAL, and R. B. WALLACE. 
1989. Allele-specific amplification of P-globin genomic 
DNA for diagnosis of sickle-cell anemia. Proc. Natl. Acad. 
Sci. USA 86:2757. 

YASUDA, N. 1978. Estimation of haplotype frequency and 
linkage disequilibrium parameter in the HLA system. Tissue 
Antigens 12:3 15-322. 

JULIAN P. ADAMS, reviewing editor 

Received October 13, 1994 

Accepted March 22, 1995 


