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 Maximum Likelihood from Incomplete Data via the EM Algorithm

 By A. P. DEMPSTER, N. M. LAIRD and D. B. RUBIN

 Harvard University and Educational Testing Service

 [Read before the ROYAL STATISTICAL SOCIETY at a meeting organized by the RESEARCH

 SECTION on Wednesday, December 8th, 1976, Professor S. D. SILVEY in the Chair]

 SUMMARY

 A broadly applicable algorithm for computing maximum likelihood estimates from
 incomplete data is presented at various levels of generality. Theory showing the
 monotone behaviour of the likelihood and convergence of the algorithm is derived.
 Many examples are sketched, including missing value situations, applications to
 grouped, censored or truncated data, finite mixture models, variance component
 estimation, hyperparameter estimation, iteratively reweighted least squares and
 factor analysis.

 Keywords: MAXIMUM LIKELIHOOD; INCOMPLETE DATA; EM ALGORITHM; POSTERIOR MODE

 1. INTRODUCTION

 THIS paper presents a general approach to iterative computation of maximum-likelihood
 estimates when the observations can be viewed as incomplete data. Since each iteration of the
 algorithm consists of an expectation step followed by a maximization step we call it the EM
 algorithm. The EM process is remarkable in part because of the simplicity and generality of
 the associated theory, and in part because of the wide range of examples which fall under its
 umbrella. When the underlying complete data come from an exponential family whose
 maximum-likelihood estimates are easily computed, then each maximization step of an EM
 algorithm is likewise easily computed.

 The term "incomplete data" in its general form implies the existence of two sample spaces
 MY and X and a many-one mapping from 8 to W. The observed data y are a realization from W.
 The corresponding x in X is not observed directly, but only indirectly through y. More
 specifically, we assume there is a mapping x ->y(x) from X to C, and that x is known only to
 lie in 8(y), the subset of ( determined by the equation y = y(x), where y is the observed data.
 We refer to x as the complete data even though in certain examples x includes what are
 traditionally called parameters.

 We postulate a family of sampling densities f(x depending on parameters cJ and derive
 its corresponding family of sampling densities g(y I cJ). The complete-data specification
 f(... j ...) is related to the incomplete-data specification g(... I ...) by

 g(yjcj4)) f(x 1 )) (.1)
 The EM algorithm is directed at finding a value of cJ which maximizes g(y 1 c)) given an

 observed y, but it does so by making essential use of the associated family f(x 0). Notice
 that given the incomplete-data specification g(y Ic), there are many possible complete-data
 specifications f(x I cJ) that will generate g(y l 4). Sometimes a natural choice will be obvious,
 at other times there may be several different ways of defining the associated f(x I0.

 Each iteration of the EM algorithm involves two steps which we call the expectation step
 (E-step) and the maximization step (M-step). The precise definitions of these steps, and their
 associated heuristic interpretations, are given in Section 2 for successively more general types
 of models. Here we shall present only a simple numerical example to give the flavour of the
 method.
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 2 DEMPSTER et al. - Maximum Likelihoodfrom Incomplete Data [No. 1,

 Rao (1965, pp. 368-369) presents data in which 197 animals are distributed multinomially
 into four categories, so that the observed data consist of

 Y = (y3,y2,y35y4) = (125,18,20,34).

 A genetic model for the population specifies cell probabilities

 (1 + 17r, i(1- 7),3(1-7),) 7I for some Tr with 0 < ff < 1.

 Thus

 g(yjIT) = (Y1+Y2+Y3+Y4)X Ye )(7)V (1.2)

 Rao uses the parameter 0 where fT = (1 - 0)2 and carries through one step of the familiar

 Fisher-scoring procedure for maximizing g(y I (1 - 0)2) given the observed y. To illustrate the
 EM algorithm, we represent y as incomplete data from a five-category multinomial population

 where the cell probabilities are (.1, (17T -), (1l- Ir), Tr),the idea being to split the first of
 the original four categories into two categories. Thus the complete data consist of
 x = (xl, x2, x3, x4, x5) where yi = x1 + x2, Y2 = x3, y3 = x4, y4 = x5, and the complete data
 specification is

 f( i (Xl + X2 + x3 + x4 + x5)X! ( (1)x (i _ I)s (4 _ - FT)X (i )X5 (1.3)
 I XI! X2! X3!x4!X5! '~

 Note that the integral in (1.1) consists in this case of summing (1.3) over the (xl,x) pairs
 (0, 125), (1, 124), ..., (125,0), while simply substituting (18,20, 34) for (x3, x4, x5).

 To define the EM algorithm we show how to find Tr(P+l) from f (P), where Tr(P) denotes the
 value of Tr after p iterations, for p = 0, 1,2, .... As stated above, two steps are required. The
 expectation step estimates the sufficient statistics of the complete data x, given the observed
 data y. In our case, (x3, x4, x5) are known to be (18,20, 34) so that the only sufficient statistics
 that have to be estimated are xl and x2 where x1 + x2 = Yi = 125. Estimating xl and x2 using
 the current estimate of X leads to

 x(P) = 125 2 and X(P) = 125 i((1.4)

 The maximization step then takes the estimated complete data (x(P),x(P), 18,20,34) and
 estimates IT by maximum likelihood as though the estimated complete data were the observed
 data, thus yielding

 x2(w) + 34 (1.5)

 The EM algorithm for this example is defined by cycling back and forth between (1.4) and (1.5).
 Starting from an initial value of f.(O) = 0 5, the algorithm moved for eight steps as displayed

 in Table 1. By substituting x4) from equation (1.4) into equation (1.5), and letting
 Tr* = 7 (P) = Tr(p+l) we can explicitly solve a quadratic equation for the maximum-likelihood
 estimate of Tr:

 Tr* = (15+4(53809))/394 0-6268214980.

 The second column in Table 1 gives the deviation f(P) -f *, and the third column gives the
 ratio of successive deviations. The ratios are essentially constant for p > 3. The general theory
 of Section 3 implies the type of convergence displayed in this example.
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 1977] DEMPSTER et al. - Maximum Likelihoodfrom Incomplete Data 3

 The EM algorithm has been proposed many times in special circumstances. For example,
 Hartley (1958) gave three multinomial examples similar to our illustrative example. Other
 examples to be reviewed in Section 4 include methods for handling missing values in normal
 models, procedures appropriate for arbitrarily censored and truncated data, and estimation

 TABLE 1

 The EM algorithm in a simple case

 p 7T(v) '7()- 7T* (#7(V+l) -7T*). (7(p) -V7T*)

 0 0-500000000 0-126821498 0-1465
 1 0.608247423 0.018574075 0-1346
 2 0.624321051 0-002500447 0-1330
 3 0.626488879 0-000332619 0.1328
 4 0.626777323 0-000044176 0-1328
 5 0.626815632 0-000005866 01328
 6 0.626820719 0000000779 -
 7 0.626821395 0.000000104
 8 0626821484 0 000000014

 methods for finite mixtures of parametric families, variance components and hyperparameters
 in Bayesian prior distributions of parameters. In addition, the EM algorithm corresponds to
 certain robust estimation techniques based on iteratively reweighted least squares. We
 anticipate that recognition of the EM algorithm at its natural level of generality will lead to new
 and useful examples, possibly including the general approach to truncated data proposed in
 Section 4.2 and the factor-analysis algorithms proposed in Section 4.7.

 Some of the theory underlying the EM algorithm was presented by Orchard and Woodbury
 (1972), and by Sundberg (1976), and some has remained buried in the literature of special
 examples, notably in Baum et al. (1970). After defining the algorithm in Section 2, we
 demonstrate in Section 3 the key results which assert that successive iterations always increase
 the likelihood, and that convergence implies a stationary point of the likelihood. We give
 sufficient conditions for convergence and also here a general description of the rate of con-
 vergence of the algorithm close to a stationary point.

 Although our discussion is almost entirely within the maximum-likelihood framework, the
 EM technique and theory can be equally easily applied to finding the mode of the posterior
 distribution in a Bayesian framework. The extension required for this application appears
 at the ends of Sections 2 and 3.

 2. DEINITIONS OF THE EM ALGORITHM

 We now define the EM algorithm, starting with cases that have strong restrictions on the
 complete-data specification f(x I ct), then presenting more general definitions applicable when
 these restrictions are partially removed in two stages. Although the theory of Section 3
 applies at the most general level, the simplicity of description and computational procedure,
 and thus the appeal and usefulness, of the EM algorithm are greater at the more restricted levels.

 Suppose first that f(x|ct) has the regular exponential-family form

 f(x I |c) = b(x) exp (c+t(x)T)/a(c+), (2.1)
 where 4t denotes a 1 x r vector parameter, t(x) denotes a 1 x r vector of complete-data sufficient
 statistics and the superscript T denotes matrix transpose. The term regular means here that 4
 is restricted only to an r-dimensional convex set Q such that (2.1) defines a density for all ct
 in LI. The parameterization 4t in (2.1) is thus unique up to an arbitrary non-singular r x r
 linear transformation, as is the corresponding choice of t(x). Such parameters are often called
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 4 DEMPSTER et al. - Maximum Likelihoodfrom Incomplete Data [No. 1,

 natural parameters, although in familiar examples the conventional parameters are often
 non-linear functions of ct. For example, in binomial sampling, the conventional parameter 7r

 and the natural parameter 0 are related by the formula 0 = log r/(l - 7r). In Section 2, we
 adhere to the natural parameter representation for ct when dealing with exponential families,
 while in Section 4 we mainly choose conventional representations. We note that in (2.1) the
 sample space X over whichf(xI (c) >0 is the same for all ct in Q.

 We now present a simple characterization of the EM algorithm which can usually be applied
 when (2.1) holds. Suppose that c(P) denotes the current value of 4t after p cycles of the
 algorithm. The next cycle can be described in two steps, as follows:

 E-step: Estimate the complete-data sufficient statistics t(x) by finding

 t(P) = E(t(x) I y, ct(P)). (2.2)

 M-step: Determine ct(P+1) as the solution of the equations

 E(t(x) I c) = tP). (2.3)

 Equations (2.3) are the familiar form of the likelihood equations for maximum-likelihood
 estimation given data from a regular exponential family. That is, if we were to suppose that
 t(P) represents the sufficient statistics computed from an observed x drawn from (2.1), then
 equations (2.3) usually define the maximum-likelihood estimator of ct. Note that for given x,

 maximizing logf(x I4 =- log a(co) + log b(x) + 4~t(x)T is equivalent to maximizing

 - log a(ct) + 4~t(x)T

 which depends on x only through t(x). Hence it is easily seen that equations (2.3) define the
 usual condition for maximizing -loga(ct)+c4t(P)T whether or not t(P) computed from (2.2)
 represents a value of t(x) associated with any x in X. In the example of Section 1, the compo-
 nents of x are integer-valued, while their expectations at each step usually are not.

 A difficulty with the M-step is that equations (2.3) are not always solvable for ct in Q. In
 such cases, the maximizing value of ct lies on the boundary of Q and a more general definition,
 as given below, must be used. However, if equations (2.3) can be solved for ct in Q, then the
 solution is unique due to the well-known convexity property of the log-likelihood for regular
 exponential families.

 Before proceeding to less restricted cases, we digress to explain why repeated application
 of the E- and M-steps leads ultimately to the value cte of ct that maximizes

 L(4t) = logg(yI (c) (2.4)

 where g(ylc ) is defined from (1.1) and (2.1). Formal convergence properties of the EM
 algorithm are given in Section 3 in the general case.

 First, we introduce notation for the conditional density of x given y and ct, namely,

 k(x I y, O~) =f(x I c))/g(y | O), (2.5)

 so that (2.4) can be written in the useful form

 L(4t) = logf(x | O-log k(x I y, O (2.6)
 For exponential families, we note that

 k(x I y, c = b(x) exp (cbt(x)T)/a(ct I y), (2.7)

 where

 a(ctIy) b(x)=exp(t(X)T)dx. (2.8)
 x(v

This content downloaded from 76.179.96.61 on Wed, 01 Apr 2020 16:27:52 UTC
All use subject to https://about.jstor.org/terms



 1977] DEMPSTER et al. - Maximum Likelihoodfrom Incomplete Data 5

 Thus, we see that f(x I (c) and k(x I y, ct) both represent exponential families with the same
 natural parameters 4t and the same sufficient statistics t(x), but are defined over different
 sample spaces X and X(y). We may now write (2.6) in the form

 L(4t) = - log a(o) + log a() I y), (2.9)
 where the parallel to (2.8) is

 a(+)= J b(x) exp (c+t(x)T) dx. (2.10)
 $

 By parallel differentiations of (2.10) and (2.8) we obtain, denoting t(x) by t,

 D log a(co) = (a/80o) log a(co) = E(t I dp) (2.11)
 and, similarly,

 D log a(c I y) = E(t I y,c), (2.12)
 whence

 DL(4t) =-E(tJ| + E(t y,I ). (2.13)
 Thus the derivatives of the log-likelihood have an attractive representation as the difference of
 an unconditional and a conditional expectation of the sufficient statistics. Formula (2.13) is
 the key to understanding the E- and M-steps of the EM algorithm, for if the algorithm converges
 to c$, so that in the limit ct(P) = (P+1)= c, then combining (2.2) and (2.3) leads to

 E(t1I*) = E(tIy,c *) or DL(4t) = 0 at cj = *.
 The striking representation (2.13) has been noticed in special cases by many authors.

 Examples will be mentioned in Section 4. The general form of (2.13) was given by Sundberg
 (1974) who ascribed it to unpublished 1966 lecture notes of Martin-L6f. We note, paren-
 thetically, that Sundberg went on to differentiate (2.10) and (2.8) repeatedly, obtaining

 Dk a(c)) = a(+~) E(tk I c )
 and (2.14)

 Dk a(+ I y) = a(( I y) E(tkIy I y

 where Dk denotes the k-way array of kth derivative operators and tk denotes the corresponding
 k-way array of kth degree monomials. From (2.14), Sundberg obtained

 Dk log a(ct) = Kk(t | 4 )
 and 1 (2.15)

 Dklog a(0 | y) = Kk(t I y,co

 where Kk denotes the k-way array of kth cumulants, so that finally he expressed

 D L(4d) - Kk(t dp) + Kk(tI y,dp). (2.16)

 Thus, derivatives of any order of the log-likelihood can be expressed as a difference between
 conditional and unconditional cumulants of the sufficient statistics. In particular, when k = 2,
 formula (2.16) expressed the second-derivative matrix of the log-likelihood as a difference of
 covariance matrices.

 We now proceed to consider more general definitions of the EM algorithm. Our second
 level of generality assumes that the complete-data specification is not a regular exponential
 family as assumed above, but a curved exponential family. In this case, the representation
 (2.1) can still be used, but the parameters 4t must lie in a curved submanifold Do of the
 r-dimensional convex region Q. The E-step of the EM algorithm can still be defined as above,
 but Sundberg's formulae no longer apply directly, so we must replace the M-step by:

 M-step: Determine c)(P+1) to be a value of co in ?0 which maximizes - log a(c~) + c+t(p)T.
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 6 DEMPSTER et al. - Maximum Likelihoodfrom Incomplete Data [No. 1,

 In other words, the M-step is now characterized as maximizing the likelihood assuming that
 x yields sufficient statistics t(P). We remark that the above extended definition of the M-step,
 with Q substituted for QO, is appropriate for those regular exponential family cases where
 equations (2.3) cannot be solved for cj in Q.

 The final level of generality omits all reference to exponential families. Here we introduce
 a new function

 Q(4)c'l |) = E(logf(x 1 4') 1 y) (2.17)
 which we assume to exist for all pairs (c+', 4t). In particular, we assume thatf(xI > O almost

 everywhere in X for all 4c eQ. We now define the EM iteration +j(P) -?c(P+1) as follows:
 E-step: Compute Q(ccI (2P)).
 M-step: Choose cj(P+1) to be a value of cj e Q which maximizes Q(cj It)).
 The heuristic idea here is that we would like to choose c* to maximize logf(xj 4). Since we
 do not know logf(xj cj), we maximize instead its current expectation given the data y and
 the current fit +f(P).

 In the special case of exponential families

 Q(4 | cj(P)) = -log a(c)) +E(b(x) I y, +~(P)) + cvt(P)T,

 so that maximizing Q(4 Ic (|P)) is equivalent to maximizing -log a(c) + ct(P)T, as in the more
 specialized definitions of the M-step. The exponential family E-step given by (2.2) is in
 principle simpler than the general E-step. In the general case, Q( I c4(P)) must be computed
 for all c-e , while for exponential families we need only compute the expectations of the
 r components of t(x).t

 The EM algorithm is easily modified to produce the posterior mode of ck in place of the
 maximum likelihood estimate of c/. Denoting the log of the prior density by G(ct), we simply

 maximize Q(ct I 4(P)) + G(4t) at the M-step of the (p + 1)st iteration. The general theory of
 Section 3 implies that L(cj) + G(c) is increasing at each iteration and provides an expression
 for the rate of convergence. In cases where G(ct) is chosen from a standard conjugate family,
 such as an inverse gamma prior for variance components, it commonly happens that

 Q(4t I cf(P)) + G(4>) has the same functional form as Q(4 I c|P)) alone, and therefore is maxi-
 mized in the same manner as Q(cj I +~(P)).

 3. GENERAL PROPERTIES

 Some basic results applicable to the EM algorithm are collected in this section. As through-
 out the paper, we assume that the observable y is fixed and known. We conclude Section 3
 with a brief review of literature on the theory of the algorithm.

 In addition to previously established notation, it will be convenient to write

 H(cJ' j )=E(log k(x I y, c>') I Y, y) (3.1)
 so that, from (2.4), (2.5) and (2.17),

 Q(cV' i)O = L(4') + H(cI' | ). (3.2)
 Lemma 1. For any pair (4', 4t) in Ql x Q,

 H(('J |) O H((+ I 0,(3.3)
 with equality if and only if k(xI y, 4') = k(x I y, cj) almost everywhere.

 Proof. Formula (3.3) is a well-known consequence of Jensen's inequality. See formulae
 (le.5.6) and (le.6.6) of Rao (1965).

 t A referee has pointed out that our use of the term "algorithm" can be criticized because we do not
 specify the sequence of computing steps actually required to carry out a single E- or M-step. It is evident that
 detailed implementations vary widely in complexity and feasibility.
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 1977] DEMPSTER et al. - Maximum Likelihoodfrom Incomplete Data 7

 To define a particular instance of an iterative algorithm requires only that we list the
 sequence of values c(O)" -* i(l)m .? cJ(2) -+... starting from a specific ci(O). In general, however,
 the term "iterative algorithm" means a rule applicable to any starting point, i.e. a mapping

 -+ M(4+) from Q to Q such that each step +0(P) -? 4(p+1) is defined by

 4|(P+1) = M(WV(P)). (3.4)
 Definition. An iterative algorithm with mapping M(4O) is a generalized EM algorithm (a

 GEM algorithm) if

 Q(M(cI) j c) > Q(c j ) (3.5)

 for every co in Q.
 Note that the definitions of the EM algorithm given in Section 2 require

 Q(M(I) I ) > Q(cV I )) (3.6)

 for every pair (cJ', cJ) in Q x Q, i.e. cJ' = M(+) maximizes Q(40' 14)
 Theorem 1. For every GEM algorithm

 L(Mc)) >L(c)) for all c eQ, (3.7)
 where equality holds if and only if both

 Q(M(W)14) = Q(414)) (3.8)
 and

 k(x j y, M(+)) = k(x I y, c)) (3.9)
 almost everywhere.

 Proof.

 L(M(OJ)) -L(cf) = {Q(M(O))j - Q(cJ 1)} + {H(cJ14J) - H(M(J)) cj)}. (3.10)
 For every GEM algorithm, the difference in Q functions above is > 0. By Lemma 1, the
 difference in H functions is greater than or equal to zero with equality if and only if

 k(x I y, cJ) = k(x j y, M(4)) almost everywhere.
 Corollary 1. Suppose for some c *e , L(*) )L(cp) for all c-e Q. Then for every GEM

 algorithm,

 (a) L(M(*)) =L()
 (b) Q(M(c*) jcJ8) = Q(c * j c*)

 and

 (c) k(xl y, M(*)) =k(x Iy, cJ *) almost everywhere.
 Corollary 2. If for some ) e ?Q, L(c1*) >L(4) for all cJ eQ 2 such that 47 # c*, then for

 every GEM algorithm

 M(4*) =

 Theorem 2. Suppose that +J(P) for p = 0, 1, 2, ... is an instance of a GEM algorithm such
 that:

 (1) the sequence L(cJ(P)) is bounded, and

 (2) Q(4@I(P+1)I 4cJ(P))- Q(cJ>(P) j 14(P)) > A(cJ>(p+l)_-Jt(p)) (>(p+l)_ -c(p))T for some scalar A >O
 and all p.

 Then the sequence +1(P) converges to some 4* in the closure of Q.
 Proof. From assumption (1) and Theorem 1, the sequence L(cJ(P)) converges to some

 L* < oo. Hence, for any e > 0, there exists a p(e) such that, for all p >p(e) and all r> 1,
 r

 E {L(cJ(P+j)) -L(c(P+J-1))} = L(cJ(P+O) -L(cJ(P)) < R. (3.11)
 j=1
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 8 DEMPSTER et al. - Maximum Likelihoodfrom Incomplete Data [No. 1,

 From Lemma 1 and (3.10), we have

 O < Q(c)(P+i) j c)(P+j-1)) - Q(4)(P+j-1) I 4)(P+j)) L(4)(P+j)) -L(L(P+j-1)),

 for j 1, and hence from (3.11) we have

 EJ {Q(ci(P+J) j dp(P+j-l)) - Q(cP(P+j-1) j cp(P+j-1))} < e, (3.12)
 j=l

 for all p >p(e) and all r > 1, where each term in the sum is non-negative.
 Applying assumption (2) in the theorem for p, p + 1, p + 2, ..., p + r- 1 and summing, we

 obtain from (3.12)

 e > AS, ()(P+j) - p(P+j-1)) (dp(P+j) - p(P+j1))T (3.13)
 j=1

 whence

 ?> A(4)(P+t) - c)(P)) (4)(P+r) - 4c)(p))T, (3.14)

 as required to prove convergence of +)(P) to some 48.
 Theorem 1 implies that L(+)) is non-decreasing on each iteration of a GEM algorithm, and is

 strictly increasing on any iteration such that Q(cJ(P+) I +)(P)) > Q(c)(P) j +)(P)). The corollaries
 imply that a maximum-likelihood estimate is a fixed point of a GEM algorithm. Theorem 2
 provides the conditions under which an instance of a GEM algorithm converges. But these
 results stop short of implying convergence to a maximum-likelihood estimator. To exhibit
 conditions under which convergence to maximum likelihood obtains, it is natural to introduce
 continuity and differentiability conditions. Henceforth in this Section we assume that Q
 is a region in ordinary real r-space, and we assume the existence and continuity of a

 sufficient number of derivatives of the functions Q(4)' )), L(c)), H(J' J c)) and M(c)) to justify
 the Taylor-series expansions used. We also assume that differentiation and expectation
 operations can be interchanged.

 Familiar properties of the score function are given in the following lemma, where V[...
 denotes a conditional covariance operator.

 Lemma 2. For all c) in Q,

 E[ logk(x| y, C))J y, )] = Dl0H(4)j i)) = 0 (3.15)
 and

 V[, a1 log k(x I Yc ))j y, )] = D1 H()1)) - -D20 H()1 c)). (3.16)

 Proof These results follow from the definition (3.1) and by differentiating

 J k(x y, )) dx = 1
 7(y)

 under the integral sign.
 Theorem 3. Suppose e>(P) p = 0, 1, 2, ... is an instance of a GEM algorithm such that

 D1OQ(ti(P+1) I i(P)) = 0.

 Then for all p, there exists a c(i(P+l) on the line segment joining +)(P) to c)(P+') such that

 Q(i)(P+--1 V(P)) - Q(ci(P) I +(P)) = _ (ci(P+1).-_i(P))D20 Q(coiP+l) c)<|(P)) (ci)(p+l)._.ci)(p))T. (3.17)

 Furthermore, if the sequence D20 Q(c)0oP+l) I c)(P)) is negative definite with eigenvalues bounded
 away from zero, and L(c)(P)) is bounded, then the sequence +(P) converges to some 4* in the
 closure of Q.

This content downloaded from 76.179.96.61 on Wed, 01 Apr 2020 16:27:52 UTC
All use subject to https://about.jstor.org/terms



 1977] DEMPSTER et al. - Maximum Likelihoodfrom Incomplete Data 9

 Proof. Expand Q(cJ1 4P) about 4J(P+l) to obtain

 Q(cJj cJ(P)) = Q(cJ(P+l) I P) + (c -c(P+1)) DO Q(cJ(P+1) I ,J(P))

 + (cJ - cJ(P+1)) D20 Q(cJoP+l) I +J(p)) (+ - cJ(p+l))T

 for some Jo-P+l) on the line segment joining cJ and cJP+l. Let cJ = +J(P) and apply the assump-
 tion of the theorem to obtain (3.17).

 If the D20 Q(co(P+l) I cJ(P)) are negative definite with eigenvalues bounded away from zero,
 then condition (2) of Theorem 2 is satisfied and the sequence +J(P) converges to some 4* in
 the closure of Q since we assume L(cJ(P)) is bounded.

 Theorem 4. Suppose that +J(P) p = O, 1, 2, ... is an instance of a GEM algorithm such that

 (1) +f(P) converges to 4* in the closure of Q,
 (2) D'0 Q(cJ(P+1) +J(P)) = O and
 (3) D20 Q(cJ>(P+l) +J(P)) is negative definite with eigenvalues bounded away from zero.

 Then

 DL(4i*) = O, (3.18)

 D20 Q(4* 1 8*) is negative definite

 and

 DM(4(*) = D20H(1* | j*) [D20 Q(1* j c*)]-I. (3.19)
 Proof. From (3.2) we have

 DL(c (P+1)) = - Dl0 H(c (P++1) c(P)) + D'0 Q(cJ(P+1) | +(P)). (3.20)

 The second term on the right-hand side of (3.20) is zero by assumption (2), while the first term
 is zero in the limit asp-oo by (3.15), and hence (3.18) is established. Similarly, D20 Q(4* |j+*)
 is negative definite, since it is the limit of D20 Q(cJ(P+l) j +(P)) whose eigenvalues are bounded
 away from zero. Finally, expanding

 D10Q(2O1c 11) = D'0 Q( + ((N D20 Q((p |0 + (Pl- ) D" Q(4* 1 + ) +
 (3.21)

 and substituting cJ, = +J(P) and 4)2 = cJ(P+l), we obtain

 0 = (cJ(P+1) - cJ*) D20 Q(4* j J) *) + (4) (P) - ,) Dll Q(4) * j J0 *) + (3.22)

 Since J(p+l) = M(c(P)) and 4* = M(c1*) we obtain in the limit from (3.22)

 0 = DM()*) D20 Q((|* j c*) +D11 Q(4) * 1 4*) (3.23)

 Formula (3.19) follows from (3.2) and (3.16).
 The assumptions of Theorems 3 and 4 can easily be verified in many instances where the

 complete-data model is a regular exponential family. Here, letting cj denote the natural
 parameters,

 D20 Q(cJj4c (P)) =-V(tjc 4j) (3.24)

 so that if the eigenvalues of V(tI cJ) are bounded above zero on some path joining all +J(P),
 the sequence converges. Note in this case that

 D20 H(c*j IJ*) =-V(t I y,*), (3.25)
 whence

 DM(4*) = V(t I y, c*) V(t | j*)-1. (3.26)
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 10 DEMPSTER et al. - Maximum Likelihood from Incowmplete Data [No. 1,

 In almost all applications, the limiting 4* specified in Theorem 2 will occur at a local, if
 not global, maximum of L(cf). An exception could occur if DM(4+*) should have eigenvalues
 exceeding unity. Then 4* could be a saddle point of L(cJ), for certain convergent +P(P)
 leading to 4* could exist which were orthogonal in the limit to the eigenvectors of DM(4*)
 associated with the large eigenvalues. Note that, if cf were given a small random perturbation
 away from a saddle point cI*, then the EM algorithm would diverge from the saddle point.
 Generally, therefore, we expect D2L(4i*) to be negative semidefinite, if not negative definite,
 in which cases the eigenvalues of DM(4*) all lie on [0, 1] or [0, 1), respectively. In view of the
 equality, D2OL(c1*) = (I-DM(cJ*))D20 Q(4* j J*), an eigenvalue of DM(cJ*) which is unity

 in a neighbourhood of 4* implies a ridge in L(+J) through cc*.
 It is easy to create examples where the parameters of the model are identifiable from the

 complete data, but not identifiable from the incomplete data. The factor analysis example of
 Section 4.7 provides such a case, where the factors are determined only up to an arbitrary

 orthogonal transformation by the incomplete data. In these cases, L(c)) has a ridge of local
 maxima including cJ = cM*. Theorem 2 can be used to prove that EM algorithms converge
 to particular cJ* in a ridge, and do not move idenfinitely in a ridge.

 When the eigenvalues of DM(4)*) are all less than 1, the largest such eigenvalue gives the
 rate of convergence of the algorithm. It is clear from (3.19) and (3.2) that the rate of conver-
 gence depends directly on the relative sizes of D2L(4*) and D20 H(cf* I 4*). Note that
 -D2L(cJ*) is a measure of the information in the data y about cJ, while - D20 H(1* I J*) is an
 expected or Fisher information in the unobserved part of x about cJ. Thus, if the information
 loss due to incompleteness is small, then the algorithm converges rapidly. The fraction of
 information loss may vary across different components of cf, suggesting that certain com-

 ponents of cJ may approach 4* rapidly using the EM algorithm, while other components may
 require many iterations.

 We now compute the rate of convergence for the example presented in Section 1. Here the
 relevant quantities may be computed in a straightforward manner as

 D20 Q(rr' 1 7) =-{E(x2 T, y) +y4}/7/2 - (y2 +y3)/(l - 7T)2
 and

 D20 H(rT' I T) -E(x2 1 , y)/7T'2 +yl/(2 + 7t)2.

 Substituting the value of w* computed in Section 1 and using (3.19) we find DM(rr*) -. 0 132778.
 This value may be verified empirically via Table 1.

 In some cases, it may be desirable to try to speed the convergence of the EM algorithm.
 One way, requiring additional storage, is to use second derivatives in order to a Newton-step.
 These derivatives can be approximated numerically by using data from past iterations giving
 the empirical rate of convergence (Aitken's acceleration process when cJ has only one com-
 ponent), or by using equation (3.19), or (3.26) in the case of regular exponential families,
 together with an estimate of +8.

 Another possible way to reduce computation when the M-step is difficult is simply to increase
 the Q function rather than maximize it at each iteration. A final possibility arises with missing
 data patterns such that factors of the likelihood have their own distinct collections of para-
 meters (Rubin, 1974). Since the proportion of missing data is less in each factor than in the
 full likelihood, the EM algorithm applied to each factor will converge more rapidly than when
 applied to the full likelihood.

 Lemma 1 and its consequence Theorem 1 were presented by Baum et al. (1970) in an
 unusual special case (see Section 4.3 below), but apparently without recognition of the broad
 generality of their argument. Beale and Little (1975) also made use of Jensen's inequality, but
 in connection with theorems about stationary points. Aspects of the theory consequent on
 our Lemma 2 were derived by Woodbury (1971) and Orchard and Woodbury (1972) in a
 general framework, but their concern was with a "principle" rather than with the EM algorithm
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 1977] DEMPSTER et al. - Maximum Likelihoodfrom Incomplete Data 11

 which they use but do not focus on directly. Convergence of the EM algorithm in special cases
 is discussed by Hartley and Hocking (1971) and by Sundberg (1976). We note that Hartley
 and Hocking must rule out ridges in L(c+) as a condition of their convergence theorem.

 When finding the posterior mode, the rate of convergence is given by replacing
 D20 Q(cj* I (*) in equation (3-15) by D20Q(cj*J *)+D2G(c1*) where G is the log of the
 prior density of 4. In practice, we would expect an informative prior to decrease the amount
 of missing information, and hence increase the rate of convergence.

 4. EXAMPLES

 Subsections 4.1-4.7 display common statistical analyses where the EM algorithm either has
 been or can be used. In each subsection, we specify the model and sketch enough details to
 allow the interested reader to derive the associated E- and M-steps, but we do not study the
 individual algorithms in detail, or investigate the rate of convergence. The very large literature
 on incomplete data is selectively reviewed, to include only papers which discuss the EM
 algorithm or closely related theory. The range of potentially useful applications is much
 broader than presented here, for instance, including specialized variance components models,
 models with discrete or continuous latent variables, and problems of missing values in general
 parametric models.

 4.1. Missing Data

 Our general model involves incomplete data, and therefore includes the problem of
 accidental or unintended missing data. Formally, we need to assume that (a) c+ is a priori
 independent of the parameters of the missing data process, and (b) the missing data are
 missing at random (Rubin, 1976). Roughly speaking, the second condition eliminates cases
 in which the missing values are missing because of the values that would have been observed.

 We discuss here three situations which have been extensively treated in the literature, namely
 the multinomial model, the normal linear model and the multivariate normal model. In the
 first two cases, the sufficient statistics for the complete-data problem are linear in the data,
 so that the estimation step in the EM algorithm is equivalent to a procedure which first
 estimates or "fills in" the individual data points and then computes the sufficient statistics
 using filled-in values. In the third example, such direct filling in is not appropriate because
 some of the sufficient statistics are quadratic in the data values.

 4.1.1. Multinomial sampling

 The EM algorithm was explicitly introduced by Hartley (1958) as a procedure for calculating
 maximum likelihood estimates given a random sample of size n from a discrete population
 where some of the observations are assigned not to individual cells but to aggregates of cells.
 The numerical example in Section 1 is such a case. In a variation on the missing-data problem,
 Carter and Myers (1973) proposed the EM algorithm for maximum likelihood estimation from
 linear combinations of discrete probability functions, using linear combinations of Poisson
 random variables as an example. The algorithm was also recently suggested by Brown (1974)
 for computing the maximum-likelihood estimates of expected cell frequencies under an
 independence model in a two-way table with some missing cells, and by Fienberg and Chen
 (1976) for the special case of cross-classified data with some observations only partially
 classified.

 We can think of the complete data as an n xp matrix x whose (i,j) element is unity if the
 ith unit belongs in the jth of p possible cells, and is zero otherwise. The ith row of x contains
 p-I zeros and one unity, but if the ith unit has incomplete data, some of the indicators in
 the ith row of x are observed to be zero, while the others are missing and we know only that
 one of them must be unity. The E-step then assigns to the missing indicators fractions that
 sum to unity within each unit, the assigned values being expectations given the current estimate
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 12 DEMPSTER et al. - Maximum Likelihoodfrom Incomplete Data [No. 1,

 of cJ. The M-step then becomes the usual estimation of c+ from the observed and assigned
 values of the indicators summed over the units.

 In practice, it is convenient to collect together those units with the same pattern of missing
 indicators, since the filled in fractional counts will be the same for each; hence one may think
 of the procedure as filling in estimated counts for each of the missing cells within each group
 of units having the same pattern of missing data.

 Hartley (1958) treated two restricted multinomial cases, namely, sampling from a Poisson
 population and sampling from a binomial population. In these cases, as in the example of
 Section 1, there is a further reduction to minimal sufficient statistics beyond the cell frequencies.
 Such a further reduction is not required by the EM algorithm.

 4.1.2. Normal linear model

 The EM algorithm has often been used for least-squares estimation in analysis of variance
 designs, or equivalently for maximum-likelihood estimation under the normal linear model
 with given residual variance CT2, whatever the value of U2. A basic reference is Healy and
 Westmacott (1956). The key idea is that exact least-squares computations are easily performed
 for special design matrices which incorporate the requisite balance and orthogonality properties,
 while least-squares computations for unbalanced designs require the inversion of a large matrix.
 Thus where the lack of balance is due to missing data, it is natural to fill in the missing values
 with their expectations given current parameter values (E-step), then re-estimate parameters
 using a simple least-squares algorithm (M-step), and iterate until the estimates exhibit no
 important change. More generally, it may be possible to add rows to a given design matrix,
 which were never present in the real world, in such a way that the least-squares analysis is
 facilitated. The procedure provides an example of the EM algorithm. The general theory of
 Section 3 shows that the procedure converges to the maximum-likelihood estimators of the
 design parameters. The estimation of variance in normal linear models is discussed in
 Section 4.4.

 4.1.3. Multivariate normal sampling

 A common problem with multivariate "continuous" data is that different individuals are
 observed on different subsets of a complete set of variables. When the data are a sample from
 a multivariate normal population, there do not exist explicit closed-form expressions for the
 maximum-likelihood estimates of the means, variances and covariances of the normal popu-
 lation, except in cases discussed by Rubin (1974). Orchard and Woodbury (1972) and Beale
 and Little (1975) have described a cyclic algorithm for maximum-likelihood estimates,
 motivated by what Orchard and Woodbury call a "missing information principle". Apart
 from details of specific implementation, their algorithm is an example of the EM algorithm
 and we believe that understanding of their method is greatly facilitated by regarding it as
 first estimating sufficient statistics and then using the simple complete-data algorithm on the
 estimated sufficient statistics to obtain parameter estimates.

 We sketch here only enough details to outline the scope of the required calculations. Given
 a complete n xp data matrix x of p variables on each of n individuals, the sufficient statistics
 consist of p linear statistics, which are column sums of x, and 21p(p+ 1) quadratic statistics,
 which are the sums of squares and sums of products corresponding to each column and pairs
 of columns of x. Given a partially observed x, it is necessary to replace the missing parts of
 the sums and sums of squares and products by their conditional expectations given the observed
 data and current fitted population parameters. Thus, for each row of x which contains missing
 values we must compute the means, mean squares and mean products of the missing values
 given the observed values in that row. The main computational burden is to find the para-
 meters of the conditional multivariate normal distribution of the missing values given the
 observed values in that row. In practice, the rows are grouped to have a common pattern of
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 1977] DEMPSTER et al. - Maximum Likelihoodfrom Incomplete Data 13

 missing data within groups, since the required conditional normal has the same parameters
 within each group.

 The E-step is completed by accumulating over all patterns of missing data; whereupon the
 M-step is immediate from the estimated first and second sample moments. The same general
 principles can be used to write down estimation procedures for the linear model with multi-
 variate normal responses, where the missing data are in the response or dependent variables
 but not in the independent variables.

 4.2. Grouping, Censoring and Truncation

 Data from repeated sampling are often reported in grouped or censored form, either for
 convenience, when it is felt that finer reporting conveys no important information, or from
 necessity, when experimental conditions or measuring devices permit sample points to be
 trapped only within specified limits. When measuring devices fail to report even the number
 of sample points in certain ranges, the data are said to be truncated. Grouping and censoring
 clearly fall within the definition of incomplete data given in Section 1, but so also does
 truncation, if we regard the unknown number of missing sample points along with their
 values as being part of the complete data.

 A general representation for this type of example postulates repeated draws of an observable
 z from a sample space - which is partitioned into mutually exclusive and exhaustive subsets

 -To, . _, ..., We suppose that (a) observations zO1, z02, -.., zon0 are fully reported for the no
 draws which fall in To, (b) only the numbers nL, n2, ..., n1_1 of sample draws falling in
 _T, T2? ...,T j?j are reported and (c) even the number of draws falling in the truncation
 region _Tj is unknown. The observed data thus consist of y = (n, zo), where n = (no, nl, . . ., nt-,)
 and zo = (zO1 z02, ...3, zO.). We denote by n = no +n +... + n11 the size of the sample, excluding
 the unknown number of truncated points.

 To define a family of sampling densities for the observed data y = (n, zo), we postulate a
 family of densities h(z 1 4) over the full space -T, and we write

 PM() = h(zl 1 4) dz for i = 0,1, ...,1 t- 1,
 i

 and P(4)) = El-' P%(cj). For given +, we suppose that n has the multinomial distribution
 defined by n draws from t categories with probabilities P*(+)/P(c)) for i = 0, 1, ..., t -1, and
 given no we treat zo as a random sample of size no from the density h(z j +)/PO(cJ) over -..
 Thus

 g(y t dF,) = (n1! / TIni!) ni t (j()) n= P( (h(zoJ I d)) (4.2.1)

 A natural complete-data specification associated with (4.2.1) is to postulate t- 1 further
 independent random samples, conditional on given n and cJ, namely zl, z2, ... . zt_:L where
 z*= (zil, z2,..., zin) denotes n* independent draws from the density h(z I t)/Pj(cj) over -i,
 for i = 1,2, ...,t -1. At this point we could declare x = (n, zo, zl, .. ., zt1), and proceed to
 invoke the EM machinery to maximize (4.2.1). If we did so, we would have

 f(xIcl) = (n!/ i1ni !)IH (P )) (4.2.2)
 which is equivalent to regarding

 (ZO1l Z029 .. ZOnI9 Zlx Z219 .. Zt-ml,n_)

 as a random sample of size n from the truncated family h(z j ()/P(cj) over - .T. The
 drawback to the use of (4.2.2) in many standard examples is that maximum likelihood
 estimates from a truncated family are not expressible in closed form, so that the M-step of
 the EM algorithm itself requires an iterative procedure.
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 14 DEMPSTER et al. - Maximum Likelihoodfrom Incomplete Data [No. 1,

 We propose therefore a further extension of the complete data x to include truncated
 sample points. We denote by m the number of truncated sample points. Given m, we suppose

 that the truncated sample values zt = (ztl, z12, ..., Zfm) are a random sample of size m from the
 density h(zI c+)/(1-P(4)) over Tt. Finally we suppose that m has the negative-binomial
 density

 (m In. P(4))= (+ 1) (1 -P(4j))mp(4,)n, (4.2.3)

 for m = 0, 1, 2, ..., conditional on given (n, zo, zl, *-, zt-1). We now have

 x = (n, zl, z2, .-.., zt-D, m, Zt)

 whose associated sampling density given cj is

 f(x|) I n! ni! m llh(zicpI). (4.2.4)
 The use of (4.2.3) can be regarded simply as a device to produce desired results, namely, (i)

 the g(y I 4) implied by (4.2.4) is given by (4.2.1), and (ii) the complete-data likelihood implied
 by (4.2.4) is the same as that obtained by regarding the components of Zo, Z1, ..., zt as a random
 sample of size n + m from h(zj I) on S.

 The E-step of the EM algorithm applied to (4.2.4) requires us to calculate

 Q(c |c+(P)) = E(ogf(x I I y, c(P)).
 Since the combinatorial factors in (4.2.4) do not involve cJ, we can as well substitute

 logf(x | 4) = n logh(zigj c). (4.2.5)
 i=0 j=1

 Since the zoi values are part of the observed y, the expectation of the i = 0 term in (4.2.5)
 given y and +(P) is simply

 no

 E logh(zo0 )44
 j=l

 For the terms i = 1, 2, ..., t- 1, i.e. the terms corresponding to grouping or censoring,

 E(l"Iog h(ziI O I Y, i(p)) = nJ logh(z j)h(z I cj(P)) dz. (4.2.6)

 For the term i= t corresponding to truncation, the expression (4.2.6) still holds except that
 m = nr is unknown and must be replaced by its expectation under (4.2.3), so that

 E(l Iogh(z:I c)I Y, c()) = [n/P(cj(P))] { logh(zj 4j)h(zjI +(P)) dz. (4.2.7)

 In cases where h(zj cJ) has exponential-family form with r sufficient statistics, the integrals
 in (4.2.6) and (4.2.7) need not be computed for all 4, since log h(z I O) is linear in the r sufficient
 statistics. Furthermore, Q(cf14c(P)) can be described via estimated sufficient statistics for a
 (hypothetical) complete sample. Thus, the M-step of the EM algorithm reduces to ordinary
 maximum likelihood given the sufficient statistics from a random sample from h(z over
 the full sample space S. Note that the size of the complete random sample is

 n +E(m 1n, cJ(P)) = n +n{l -P(cj(P))}/P(4p(P)) = n/P(cj(P)). (4.2.8)
 Two immediate extensions of the foregoing theory serve to illustrate the power and

 flexibility of the technique. First, the partition which defines grouping, censoring and
 truncation need not remain constant across sample units. An appropriate complete-data
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 1977] DEMPSTER et al. - Maximum Likelihoodfrom Incomplete Data 15

 model can be specified for the observed sample units associated with each partition and the
 Q-function for all units is found by adding over these collections of units. Second, independent
 and non-identically distributed observables, as in regression models, are easily incorporated.
 Both extensions can be handled simultaneously.

 The familiar probit model of quantal assay illustrates the first extension. An experimental
 animal is assumed to live (y = 0) or die (y = 1), according as its unobserved tolerance z exceeds
 or fails to exceed a presented stimulus S. Thus the tolerance z is censored both above and
 below S. The probit model assumes an unobserved random sample Z1, Z2, , ,Z. from a
 normal distribution with unknown mean ,u and variance a2, while the observed indicators

 Y1DY2, ..., yn provide data censored at various stimulus levels S,, S2, ..., S,,, which are supposed
 determined a priori and known. The details of the EM algorithm are straightforward and are
 not pursued here. Notation and relevant formulas may be found in Mantel and Greenhouse
 (1967) whose purpose was to remark on the special interpretation of the likelihood equations
 which is given in our general formula (2.13).

 There is a very extensive literature on grouping, censoring and truncation, but only a few
 papers explicitly formulate the EM algorithm. An interesting early example is Grundy (1952)
 who deals with univariate normal sampling and who uses a Taylor series expansion to approxi-
 mate the integrals required to handle grouping into narrow class intervals. A key paper is
 Blight (1970) which treats exponential families in general, and explicitly recognizes the
 appealing two-step interpretation of each EM iteration. Efron (1967) proposed the EM algorithm
 for singly censored data, and Turnbull (1974, 1976) extended Efron's approach to arbitrarily
 grouped, censored and truncated data.

 Although Grundy and Blight formally include truncation in their discussion, they appear to
 be suggesting the first level of complete-data modelling, as in (4.2.2), rather than the second
 level, as in (4.2.4). The second-level specification was used in special cases by Hartley (1958)
 and Irwin (1959, 1963). Irwin ascribes the idea to McKendrick (1926). The special cases
 concern truncated zero-frequency counts for Poisson and negative-binomial samples. The
 device of assigning a negative-binomial distribution to the number of truncated sample points
 was not explicitly formulated by these authors, and the idea of sampling Z1,1, Z1,2 ..., Zi,m from
 the region of truncation does not arise in their special case.

 4.3. Finite Mixtures

 Suppose that an observable y is represented as n observations y = (Y1, Y21 ... Yn). Suppose
 further that there exists a finite set of R states, and that each yi is associated with an unobserved
 state. Thus, there exists an unobserved vector z = (Z1, Z2, ...,Zn), where zi is the indicator
 vector of length R whose components are all zero except for one equal to unity indicating the
 unobserved state associated with yi. Defining the complete data to be x = (y, z), we see that
 the theory of Sections 2 and 3 applies for quite general specification f(x 4+).

 A natural way to conceptualize mixture specifications is to think first of the marginal
 distribution of the indicators z, and then to specify the distribution of y given z. With the
 exception of one concluding example, we assume throughout Section 4.3 that Zl, Z2, ... . Zn are
 independently and identically drawn from a density v(... I ). We further assume there is a
 set of R densities u(... I r, c) for r = (1,0, .. .,0), (0,1,0, ...,0), ..., (0, ...,0,1) such that the yi
 given Zi are conditionally independent with densities u(... jzi, 4O). Finally, denoting

 U(Y, 1 ) = (log u(yi I (1 , 0, ..., 0), c), log u(yi I (0, 1, ...,0),cJ, ...,log u(yi (0, 0, ..., 1), c))

 (4.3.1)

 and

 V(cj (logv((W,0, ..,0)jIj),logv((0,1,..., 0) (),., logv((0,0, .,1)1)),
 (4.3.2)
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 16 DEMPSTER et al. - Maximum Likelihoodfrom Incomplete Data [No. 1,

 we can express the complete-data log-likelihood as

 n n

 logf(x|) = E ZT U(yi I ) + E ZT V(). (4.3.3)
 i=1 =

 Since the complete-data log-likelihood is linear in the components of each zi, the E-step
 of the EM algorithm requires us to estimate the components of zi given the observed y and
 the current fitted parameters. These estimated components of zi are simply the current
 conditional probabilities that yi belongs to each of the R states. In many examples, the ct
 parameters of u(... I 4) and v(... I 4) are unrelated, so that the first and second terms in (4.3.3)
 may be maximized separately. The M-step is then equivalent to the complete-data maximi-
 zation for the problem except that each observation yi contributes to the log-likelihood
 associated with each of the R states, with weights given by the R estimated components of zi,
 and the counts in the R states are the sums of the estimated components of the zi.

 The most widely studied examples of this formulation concern random samples from a
 mixture of normal distributions or other standard families. Hasselblad (1966) discussed
 mixtures of R normals, and subsequently Hasselblad (1969) treated more general random
 sampling models, giving as examples mixtures of Poissons, binomials and exponentials. Day
 (1969) considered mixtures of two multivariate normal populations with a common unknown
 covariance matrix, while Wolfe (1970) studied mixtures of binomials and mixtures of arbitrary
 multivariate normal distributions. Except that Wolfe (1970) referred to Hasselblad (1966), all
 these authors apparently worked independently. Although they did not differentiate with
 respect to natural exponential-family parameters, which would have produced derivatives
 directly in the appealing form (2.13), they all manipulated the likelihood equations into this
 form and recognized the simple interpretation in terms of unconditional and conditional
 moments. Further, they all suggested the EM algorithm. For his special case, Day (1969)
 noticed that the estimated marginal mean and covariance are constant across iterations, so
 that the implementation of the algorithm can be streamlined. All offered practical advice on
 various aspects of the algorithm, such as initial estimates, rates of convergence and multiple
 solutions to the likelihood equations. Wolfe (1970) suggested the use of Aitken's acceleration
 process to improve the rate of convergence. Hasselblad (1966, 1969) reported that in
 practice the procedure always increased the likelihood, but none of the authors proved this
 fact.

 Two further papers in the same vein are by Hosmer (1973a, b). The first of these reported
 pessimistic simulation results on the small-sample mean squared error of the maximum-
 likelihood estimates for univariate normal mixtures, while the second studied the situation
 where independent samples are available from two normal populations, along with a sample
 from an unknown mixture of the two populations. The EM algorithm was developed for the
 special case of the second paper.

 Haberman (1976) presented an interesting example which includes both multinomial
 missing values (Section 3.1.1) and finite mixtures: sampling from a multiway contingency
 table where the population cell frequencies are specified by a log-linear model. An especially
 interesting case arises when the incompleteness of the data is defined by the absence of all
 data on one factor. In effect, the observed data are drawn from a lower-order contingency
 table which is an unknown mixture of the tables corresponding to levels of the unobserved
 factor. These models include the clustering or latent-structure models discussed by Wolfe
 (1970), but permit more general and quite complex finite-mixture models, depending on the
 complexity of the complete-data log-linear model. Haberman showed for his type of data that
 each iteration of the EM algorithm increases the likelihood.

 Orchard and Woodbury (1972) discussed finite-mixture problems in a non-exponential-
 family framework. These authors also drew attention to an early paper by Ceppellini et al.
 (1955) who developed maximum likelihood and the EM algorithm for a class of finite-mixture
 problems arising in genetics.
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 Finally, we mention another independent special derivation of the EM method for finite
 mixtures developed in a series of papers (Baum and Eagon, 1967; Baum et al., 1970; Baum,
 1972). Their model is unusual in that the n indicators Z1, Z2, ..., zn are not independently and
 identically distributed, but rather are specified to follow a Markov chain. The complete-data
 likelihood given by (4.3.3) must be modified by replacing the second term by En zT V*(+~) z-1
 where V*(4) is the matrix of transition probabilities and zo is a known vector of initial state
 probabilities for the Markov chain.

 4.4. Variance Components

 In this section we discuss maximum-likelihood estimation of variance components in
 mixed-model analysis of variance. We begin with the case of all random components and
 then extend to the case of some fixed components.

 Suppose that A is a fixed and known n x r "design" matrix, and that y is an n x 1 vector
 of observables obtained by the linear transformation

 y = Ax (4.4.1)

 from an unobserved r x 1 vector x. Suppose further that A and x are correspondingly parti-
 tioned into

 A = (Al, A2, ..., Ak+l) (4.4.2)
 and

 x = (xT, 4, ...,x T)T, (4.4.3)

 where Ai and xi have dimensions n x ri and ri x l for i = 1, 2, ..., k+ 1, and where k+l r,= r.
 Suppose that the complete-data specification asserts that the xi are independently distributed,
 and

 Xi ~N(O,<ri) i= 1,... jk+l, (4.4.4)
 where the a4 are unknown parameters. The corresponding incomplete-data specification,
 implied by (1.1), asserts that y is normally distributed with mean vector zero and covariance
 matrix

 =J1 1+2 2 2 +*** + ark+l 7 k+11

 where the E = A -AT are fixed and known. The task is to estimate the unknown variance

 components al, ar*,..., crk+l+
 As described, the model is a natural candidate for estimation by the EM algorithm. In

 practice, however, the framework usually arises in the context of linear models where the
 relevance of incomplete-data concepts is at first sight remote. Suppose that Ak+l = I and
 that we rewrite (4.4.1) in the form

 k

 y = A xi + xk+l. (4.4.5)

 Then we may interpret y as a response vector from a linear model where (Al, A2, ...,Ak)
 represents a partition of the design matrix, (xl, x2, ..., Xk) represents a partition of the vector
 of regression coefficients and Xk+l represents the vector of discrepancies of y from linear
 behaviour. The normal linear model assumes that the components of xk+l are independent
 N(O, a2) distributed, as we have assumed with a2= ak+. Making the xl, x2, ...,Xk also
 normally distributed, as we did above, converts the model from a fixed effects model to a
 random effects model.

 When the model is viewed as an exponential family of the form (2.1), the sufficient statistics
 are
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 The E-step requires us to calculate the conditional expectations of ti = xT xi given y and the
 current a(P)2 for i = 1,2,..., k+ 1. Standard methods can be used to compute the mean 4(iP)
 and covariance VP) of the conditional normal distributions of the xi, given y and the current
 parameters, from the joint normal distribution specified by (4.4.1)-(4.4.4) with a4.)2 in place
 of oA. Then the conditional expectations of xTxi are

 = (p) (I)TtZ(J fit =.()T+trV (4.4.7)
 The M-step of the EM algorithm is then trivial since the maximum-likelihood estimators of
 the aT given 4(p) are simply

 0r(P+1)2 = t&y)/ri fori=1,2,...,k+1. (4.4.8)

 Random effects models can be viewed as a special subclass of mixed models where the
 fixed effects are absent. To define a general mixed model, suppose that xl in (4.4.3) defines
 unknown fixed parameters, while x2,x3,...,Xk+1 are randomly distributed as above. Then
 the observed data y have a normal distribution with mean vector V. and covariance matrix-E,
 where

 k+1

 ,u=Alx, and Z= Sa i. (4.4.9)
 i=2

 Maximum likelihood estimates of x1,a2,...,a2+1 can be obtained by the EM method where
 (x2, x3, ..., xk+1) are regarded as missing. We do not pursue the details, but we note that the
 iterative algorithm presented by Hartley and Rao (1967) for the mixed model is essentially
 the EM algorithm.

 An alternative approach to the mixed model is to use a pure random effects analysis
 except that a1 is fixed at so. Again the EM algorithm can be used. It can be shown that the
 estimates Of u2, 3l *,s ak+1 found in this way are identical to those described by Patterson
 and Thompson (1971), Corbeil and Searle (1976) and Harville (1977) under the label REML,
 or "restricted" maximum likelihood.

 4.5. Hyperparameter Estimation

 Suppose that a vector of observables, y, has a statistical specification given by a family
 of densities l(y I 0) while the parameters 0 themselves have a specification given by the family
 of densities h(0 1 40) depending on another level of parameters 4) called the hyperparameters.
 Typically, the number of components in 4) is substantially less than the number of components
 in 0. Such a model fits naturally into our incomplete data formulation when we take x = (y, 0).
 Indeed, the random effect model studied in (4.4.5) is an example, where we take 0 to be
 (x1, X2, ... , Xk, u2) and cJ to be (a2 , ..., ak).

 Bayesian models provide a large fertile area for the development of further examples.

 Traditional Bayesian inference requires a specific prior density for 0, say h(0 | c)) for a specific 4).
 When h(0 | dp) is regarded as a family of prior densities, a fully Bayesian approach requires a
 "hyperprior" density for cJ. Section 3 pointed out that the EM algorithm can be used to find
 the posterior mode for such problems. An ad hoc simplification of the fully Bayesian approach

 involves inferences about 0 being drawn using the prior density h(0 1 dp) with 4) replaced by a
 point estimate cJ. These procedures are often called empirical Bayes' procedures. Many
 examples and a discussion of their properties may be found in Maritz (1964). Other examples
 involving the use of point estimates of 4) are found in Mosteller and Wallace (1965), Good
 (1967) and Efron and Morris (1975).

 A straightforward application of the EM algorithm computes the maximum-likelihood

 estimate of 4) from the marginal density of the data g(y 1 c)), here defined as

 g(yI O = l(yO) h(O dc)dO
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 for 0 E 0. The E-step tells us to estimate logf(x 1 4)) = log l(y I 0) + log h(0 O) by its conditional
 expectation given y and 4) = +J(P). For the M-step, we maximize this expectation over cJ.
 When the densities h(0 1 c) form an exponential family with sufficient statistics t(0), then
 f(x 1 4O) is again an exponential family with sufficient statistics t(O), regardless of the form of
 i(y 0), whence the two steps of the EM algorithm reduce to (2.2) and (2.3).

 It is interesting that the EM algorithm appears in the Bayesian literature in Good (1956),
 who apparently found it appealing on intuitive grounds but did not recognize the connection
 with maximum likelihood. He later (Good, 1965) discussed estimation of hyperparameters
 by maximum likelihood for the multinomial-Dirichlet model, but without using EM.

 4.6. Iteratively Reweighted Least Squares

 For certain models, the EM algorithm becomes iteratively reweighted least squares.
 Specifically, let y = (Yi, ..., yn) be a random sample from a population such that (yi -,u) (q,)a
 has a N(O, 1) distribution conditional on qi, and q = (ql, ...,q.) is an independently, identically
 distributed sample from the density h(qi) on qik 0. When qi is unobserved, the marginal
 density of yi has the form given by (1.1) and we may apply the EM algorithm to estimate ,u and
 A2* As an example, when h(q,) defines a X2 distribution, then the marginal distribution of yi
 is a linearly transformed t with r degrees of freedom. Other examples of "normal/independent"
 densities, such as the "normal/ uniform" or the contaminated normal distribution may be
 found in Chapter 4 of Andrews et al. (1972).

 First suppose h(q,) is free of unknown parameters. Then the density of x = (y, q) forms
 an exponential family with sufficient statistics I yi qi, y?qi and I qi. When q is observed
 the maximum likelihood estimates of ,u and a2 are obtained from a sample of size n by simple
 weighted least squares:

 n n

 I = lyiqi/ qi,
 (4.6.1)

 n

 A2 = (y,_A)2q./n.
 i=1I

 When q is not observed, we may apply the EM algorithm:

 E-step: Estimate (Eyqi2 ,yiqi,q) by its expectation given y, ,u(P) and (p)2.
 M-step Use the estimated sufficient statistics to compute u(P+l) and a(p+1)2.

 These steps may be expressed simply in terms of equations (4.6.1), indexing the left-hand sides
 by (p+ 1), and substituting

 w = E(qi IY yiA(p). A(p)2) (4.6.2)
 for qi on the right-hand side. The effect of not observing q is to change the simple weighted
 least-squares equations to iteratively reweighted least-squares equations.

 We remark that wi is easy to find for some densities h(qi). For example, if

 h(qi) = fl/Pr(a))qq' exp(-flqj) (4.6.3)
 for oz, 3,qi >0, then h(qi j yj,u(P)V, a(P)2) has the same gamma form with oz and ,B replaced by
 a* = c + J and pi* =1 +i(yi -,u(p))2/a(p)2, whence

 Wi= a*/Pt.
 To obtain a contaminated normal, we may set

 oz,C if qi = kl,

 h(qi)= 02 if qi=k2,
 0 otherwise,
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 where ?ei > O, ?1 + U2 = 1. Then
 2 2

 wi = E ki a exp ( j k2 oej exp (-zij),
 j=1

 where

 Zi= (yi - (P))2 kj/{2a(P)2}.

 If h(qi) is uniform on (a, b), then h(qi l yi, (P), a(P)) is simply proportional to the density of yi
 given qi, u(P) and a(P). Since this conditional density of yi is N(Q(P), u(P)2/qj), h(qi I yj,u(P), a(P))
 has the form given in (4.6.3) with a <qi < b, a = 3 and = (y -U(p))2/{2 (l)2}. In this last
 example, computation of wi requires evaluation of incomplete gamma functions.

 We may also allow h(q,) to depend on unknown parameters, say X, which must be estimated
 with u and a2. For example, when h(qi) is X2 with unknown r, then r must be estimated.
 If X is distinct from u and a2, then the complete-data log-likelihood, and hence

 Q(IU a2l I hu(P)~ a(P)2Ix(p))

 is the sum of two pieces, one depending only on (p,a2), the other depending only on X.
 Implementing the EM algorithm by maximizing Q(... I ...) again leads to iteratively reweighted
 least squares for (P+1) and (P+1)2, with additional equations for X(P+l).

 4.7. Factor Analysis

 In our final class of examples, interest focuses on the dependence of p observed variables
 on q<p unobserved "latent" variables or "factors". When both sets of variables are con-
 tinuous and the observed variables are assumed to have a linear regression on the factors,
 the model is commonly called factor analysis. Our discussion using the EM algorithm applies
 when the variables are normally distributed.

 More specifically, let y be the n x p observed data matrix and z be the n x q unobserved
 factor-score matrix. Then x = (y, z), where the rows of x are independently and identically
 distributed. The marginal distribution of each row of z is normal with mean (0, ..., 0), variance
 (1, ..., 1) and correlation R. The conditional distribution of the ith row of y given z is normal
 with mean a + fzi and residual covariance ST2 = diag (-..., 2), where zi is the ith row of z.
 Note that given the factors the variables are independent. The parameters cJ thus consist of
 a, p and ST2. The regression coefficient matrix ,3 is commonly called the factor-loading matrix
 and the residual variances ST2 are commonly called the uniquenesses.

 Two cases are defined by further restrictions on p and/or R. In the first case, ,3 is
 unrestricted and R = I. In the second case, restrictions are placed on p (a priori zeroes), and
 the requirement that R = I is possibly relaxed so that some of the correlations among the
 factors are to be estimated. See Joreskog (1969) for examples and discussion of these models.
 It is sometimes desirable to place a prior distribution on the uniquenesses to avoid the
 occurrence of zero estimates (Martin and McDonald, 1975).

 If the factors were observed, the computation of the maximum-likelihood estimates of cJ
 would follow from the usual least-squares computations based on the sums, sums of squares,
 and sum of cross-products of x. Let (y, i) be the sample mean vector and

 CYY CYZ1

 LCZ CZZ

 be the sample cross-products matrix of x. Then the maximum-likelihood estimate of a is
 simply y while the maximum-likelihood estimates of the factor loadings and uniqueness for
 the jth variable follow from the regression of that variable on the factors. Note that the
 calculations of these parameters may involve different sets of factors for different observed
 variables reflecting the a priori zeros in P. The matrix R is estimated from Czz (and 2); if
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 restrictions are placed on R, special complete-data maximum-likelihood techniques may have
 to be used (Dempster, 1972). We have thus described the M-step of the algorithm, namely, the
 computation of the maximum-likelihood estimate of Cj from complete data. The algorithm
 can be easily adapted to obtain the posterior mode when prior distributions are assigned to the
 uniqueness.

 The E-step of the algorithm requires us to calculate the expected value of C. and C,y
 given the current estimated cj (i is always estimated as 0). This computation is again a
 standard least-squares computation: we estimate the regression coefficients of the factors on
 the variables assuming the current estimated 4 found from the M-step.

 Thus the resultant EM-algorithm consists of "back and forth" least-squares calculations on
 the cross-products matrix of all variables (with the M-step supplemented in cases of special
 restrictions on R). Apparently, the method has not been previously proposed, even though it
 is quite straightforward and can handle many cases using only familiar computations.
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 DISCUSSION ON THE PAPER BY PROFESSOR DEMPSTER, PROFESSOR LAIRD AND DR RUBIN

 E. M. L. BEALE (Scicon Computer Services Ltd and Scientific Control Systems Ltd): It gives
 me great pleasure to open the discussion of this lucid and scholarly paper on an important topic,
 and to thank all three authors for crossing the Atlantic to present it to us. The topic is in many
 ways a deceptive one, so it is hardly surprising that earlier authors have seen only parts of it.
 I therefore thought it might be useful to relate the development of Dr Little's and my understanding
 of the subject. We were studying multiple linear regression with missing values, and we developed
 an iterative algorithm that worked well in simulation experiments. We justified it on the grounds
 that it produced consistent estimates, but we were not clear about its relation to maximum likeli-
 hood. And when we saw Orchard and Woodbury's paper we had difficulty in understanding it.
 You must make allowance for the fact that at the time Rod Little was a young Ph.D. student,
 with a mere one-day-a-week visiting professor for a supervisor. Our difficulty was essentially a
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 chicken-and-egg problem. It was clear that if we knew the values of the parameters, then we could
 find unbiased estimates for the sufficient statistics from the underlying complete data, and hence find
 maximum-likelihood estimates for the parameters. But was this a fundamentally circular argument?

 We eventually understood that it was not a circular argument, but a transformation from an
 assumed parameter-vector to another parameter-vector that maximized the conditional expected
 likelihood. And we also understood Orchard and Woodbury's Missing Information Principle as
 proclaiming that the maximum-likelihood solution is a fixed point of this transformation. Orchard
 and Woodbury also used the Missing Information Algorithm-the present authors' EM algorithm-
 as a way of finding this fixed point. But they also observed-as have the present authors-that the
 algorithm is not always an effective way of exploiting the principle.

 These remarks explain why I am less enthusiastic about the authors' new terminology than I am
 about the technical content of their paper. This applies particularly to the general form of the
 algorithm expounded after equation (2.17), where the division of the method into separate E- and
 M-steps is quite impractical.

 The fact remains that the authors have added considerably to our understanding of the algorithm,
 as well as drawing attention to its wide applicability. Theorem 1, proving that it always increases
 the likelihood, is very comforting. If we assume that the set of parameter values giving a higher
 value of the likelihood is bounded, then we can deduce that the sequence j+') has at least one limit
 point, and any such limit point must be either a maximum or a stationary value of L(c)) (provided
 that cj(v+1) is chosen so that Q(4< I cj(v)) is significantly larger for cj = cj(V+1) than for 4i = +(X)
 whenever 'i = i('(X) is a significant distance from a maximum or stationary value of the function).

 It would be interesting to know more about the circumstances in which this limit point was
 guaranteed to be a global maximum of L(4+). The fact that the global maximum may not be unique
 indicates that this is a difficult question.

 Practical people might well argue that this question is of more mathematical than statistical
 interest. So let me now say a few words about something practical we have recently done about
 missing values in multiple regression. The obvious practical approach is to guess at suitable values
 for the missing quantities and then to analyse the data as if they were complete. I understand that
 a more respectable name for these guessed values is "imputed values" if the guessing is done
 objectively. Now the natural approach is to replace each missing quantity by its mean value
 conditional on the values of all known variables. And these mean values can be found iteratively
 by the Missing Information Algorithm. But the Missing Information Principle shows that this may
 be unsatisfactory if the sufficient statistics are the first and second moments of the variables, since
 there is a negative bias in the resulting estimates of the variances. We overcome this difficulty by
 replacing missing values by two or more alternative sets of imputed values. Specifically, if an
 observation contains m missing values, we replace it with (m +1) equally weighted fractional
 observations containing imputed values that match the first and second moments. So we use the
 Missing Information Algorithm to impute appropriate sets of values for the missing quantities, and
 then analyse the data using a standard multiple regression program. This simplifies the data-
 processing aspects of the work and, in particular, the task of residual analysis. It also allows us to
 transform the data if we are prepared to give up strict maximum likelihood. We know there are
 negative biases in the conventional standard errors calculated as if incomplete data were complete,
 so we have the option to use Beale and Little's approximation instead.

 In conclusion, I am happy to propose a vote of thanks for this paper, in spite of its title.

 Dr J. A. NELDER (Rothamsted Experimental Station): There are times when it seems that our
 subject is becoming more and more fragmented with people quarrying vigorously in smaller and
 smaller corners and becoming more and more isolated from each other in consequence. It is a
 particular pleasure, therefore, to be able to speak to a paper which seeks, and achieves, a synthesis
 by exhibiting diverse procedures as special cases of a general one.

 The EM algorithm is particularly simple for exponential families with a canonical form for the
 parameters, and not especially complicated for other parametrizations. However, the authors push
 the algorithm towards complete generality in equation (2.17) and the succeeding definitions. In this
 most general form the procedure looks less attractive, because the E-step now requires the evaluation
 of a multi-dimensional function of continuous variables, possibly with infinite ranges, in contrast
 to the computation of a finite set of quantities for the simpler cases. Such a function can of course
 only be approximated by a set of values on a finite grid in any actual algorithm, and the practical

This content downloaded from 76.179.96.61 on Wed, 01 Apr 2020 16:27:52 UTC
All use subject to https://about.jstor.org/terms



 24 Discussion on the Paper by Professor Dempster et al. [No. 1,

 problems involved in the selection of such a grid are not trivial. It is probably not accidental that
 in their examples the authors do not need this level of generality, and indeed they demonstrate that
 the more specific form has a very wide scope.

 There is, as the authors recognize, often a considerable gap between the establishment of a
 theoretical result, that a function converges to a limit, and the construction of an efficient algorithm
 to evaluate that limit. It was Jeffreys, I think, who pointed out that a convergent series was fine in
 theory, but could be hopelessly slow to converge in practice, while a divergent series, if asymptotic,
 might provide a very good algorithm but could not give the function value to arbitrary accuracy.
 Experience with this algorithm suggests to me that a good deal of work will be justified to improve
 convergence in common and important cases. I give two examples from practical experience.

 The first is the missing value problem for the Normal linear model, discussed in Section 4.1.2.
 It is well known that for balanced cross-classified data with an additive model and one missing
 value, convergence in one cycle can be achieved by multiplying the calculated adjustment to the
 starting value, as given by the EM algorithm, by the factor N/v where N is the total number of
 observations and v the number of d.f. for error with the data complete. Preece (1971) has investi-
 gated to what extent this result can be generalized. When there are several missing values, we
 noticed that the EM algorithm was often rather slow, and Preece devised an adjusted algorithm using
 a suitable "stretching" factor for as long as the likelihood continued to increase (stretching may
 cause divergence occasionally). Preece's algorithm is a substantial improvement on the plain EM
 algorithm.

 The second example concerns latent-structure analysis. I investigated a 4 x 4 table of counts
 which was supposed to be the margin of a hypothetical 4 x 4 x 2 table in which the two slices could
 be fitted by a multiplicative model, but with different effects in the two slices. The ratio of the
 totals in the two slices is also assumed unknown. The procedure described by Goodman (1974)
 is an example of the EM algorithm. Given a working set of parameters for the 4 x 4 x 2 table, the
 complete data can be estimated by adjusting the fitted values from the model to add to the known
 4 x 4 margin. The model is then refitted to these adjusted data. Each cycle increased the likelihood,

 but often painfully slowly. However, I noticed that if tL1 and 1A2 were two consecutive sets of
 estimated complete data for the 4 x 4 x 2 table then although g12 was an improvement on tL1, explora-
 tion in the direction lnIA2- ln tt was often very successful. In fact it appeared that the step
 lnh2- ln Ls1, though in the right direction, could be too small in size by a factor as large as 10.
 Here again a simple stretching addition to the basic algorithm brought substantial improvement.

 I found the authors' description of factor analysis in Section 4.7 most enlightening, and I now
 realize that factor analysis and latent-structure analysis are both instances of generalized linear
 models with unknown covariates. For factor analysis we have Normal errors and quantitative
 covariates, and for latent-structure analysis Poisson errors and qualitative covariates. However,
 I have been most frustrated by my inability to get their factor-analysis algorithm to work, and I
 hope they will give a full algebraic specification in their reply.

 I hope it is obvious that I have found this paper intellectually stimulating, and I am very glad
 to second the vote of thanks.

 The vote of thanks was passed by acclamation.

 Professor CEDRIC A. B. SMITH (University College London): The iterative algorithm presented
 by the authors has a number of virtues not explicitly mentioned. For example, at least for (possibly
 truncated and mixed) multinomial data their Table 1 readily leads to the standard error. Denote
 the ratio in the last column by A (= 0-1328, after a few iterations). The total number of individuals
 in the denominator of (1.5) can be estimated as

 X2 +34+18+20 = 125 + 34 + 18 + 20 = n* (say) (=101-83)
 2 1~~~~~~ + tfT*

 The standard error of 7r* is then

 S.E.(7r*) =,n*(11 A) (= 0051).

 This is the ordinary binomial standard error inflated by an extra factor (1- A) in the denominator.
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 There are other features adding generality and flexibility to the algorithm. Thus Aitken's
 acceleration process to speed up the convergence can be thought of geometrically. For each value
 7r(p), (1.4) and (1.5) give a corresponding "improved" value .7T(+1). The points (x, y) = (.7(2), 7T(V+l))
 lie on a curve C intersecting the line (x = y) at (7T*, 7*). A straight line through two points
 (7 (v), 7T(V+l)) intersects x = y near the final point (7T*, f*). A parabola through three points is
 better.

 However, in particular cases there are methods more powerful than EM. The maximum-likeli-
 hood equation for the model of (1.2) is

 125 18 20 +34=o.
 2 + -a 1--7r 1-7 T 7V

 As M. C. K. Tweedie suggested (1945, see Smith, 1969, pp. 421-423) by replacing each term by
 its reciprocal we get the easily solvable linear equation

 2+-a 1--a 1- 7r 0.
 125 18 20 34

 The solution is 0-089555/0 142967 = 0-6264, differing only trivially from -a* = 0-6268. Its standard
 error is (i x 197 x 0KO 147967)-l = 0-0515.

 Dr R. J. A. LITTLE (ISI World Fertility Survey): The authors have produced an excellent review
 paper demonstrating the power and elegance of this algorithm, and have contributed usefully to its
 theory. To place the algorithm in context, let us compare it with the most common alternative
 iterative technique for maximum-likelihood estimation, the method of scoring.

 Advantages of the method of scoring are a quadratic rather than linear convergence rate, and
 the provision of an estimated asymptotic covariance matrix of the maximum-likelihood estimates,
 from the final inversion of the (expected) information matrix at the Newton step. In contrast, the
 EM algorithm does not provide estimates of standard error, since calculation and inversion of the
 information matrix are avoided. In another sense this is an advantage, since in multiparameter
 examples such as the incomplete multivariate normal sample or factor analysis, the information
 matrix can have high dimension and inverting it may be costly.

 Other advantages of the EM approach are (a) because it is stupid, it is safe, (b) it is easy to
 program, and often allows simple adaptation of complete data methods, and (c) it provides fitted
 values for missing data.

 A useful illustration of these merits lies in the linear model with unbalanced design matrix.
 The question of speeding the algorithm has been raised in this context, so let me suggest that con-
 siderable gains can be obtained by judicious choice of the form of the hypothetical complete data x.
 For example, Chapter 16 of Snedecor and Cochran (1967) gives a 3 x 3 table of means {Pin} for an
 unbalanced two-way analysis of variance, with cell counts {nij} = (36, 67, 49, 31, 60, 49, 58, 87, 80).
 A naive application of the Healy-Westmacott procedure would be to invent missing observations
 so that x is a balanced table with 87 observations per cell. However if x had cell counts nt, such that
 nij = ai bj, then a simple analysis is possible on the cell totals, as Snedecor and Cochran point out.
 Hence we seek x with cell counts n'1 = ni1 + mil and ntj = ai bj. Fractional values of mij are
 allowed. One choice of {nti}, not optimal, is {ni1} = (39-1, 67, 55-7, 35-1, 60, 49-9, 58, 99-3, 82-6).
 We have drastically reduced the amount of missing data and thus, by the authors' Theorem 2,
 increased the rate of convergence. Here the E-step consists in calculating from current estimates
 ,ut) of the cell means cell totals njyji + mju( r). The M-step is the standard analysis with these
 totals, and cell sizes ni. Inventing data is an unusual practice to recommend to this Society, but
 here it does quite nicely!

 Finally, I should like to add to the authors' impressive list of applications discriminant analysis
 and time series analysis. McClachlan (1975) has given a procedure for using unclassified observa-
 tions in discriminant analysis to help estimate the discriminant function. This method can be
 improved by treating the unclassified data as incomplete, in that the variable indicating the group is
 missing, and applying the EM algorithm. However, in practice I have found that gains over standard
 procedures are negligible. Perhaps a more promising application lies in estimation of autoregressive
 models for time series with missing values, as suggested in Little (1974).
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 Mr T. J. ORCHARD (Office of Population Censuses and Surveys): I should like to congratulate
 the speakers on the presentation of an interesting and valuable paper. To some extent they have
 merely restated what has been presented in the papers referred to, but the material has been pre-
 sented in such a mathematically concise and elegant manner that it was a real pleasure to read.

 I am, however, a little unsure about the value of the paper to the average practising data analyst
 (not necessarily a trained statistician) who may be faced with problems similar to those described.
 One may hope that the examples presented would enable such a person to recognize that his par-
 ticular problem can be solved by the use of the technique but in this paper there is little to show
 him exactly how it can be done. I may have been misled by the title of course to expect something
 a little more practical, which dealt, for example, with methods of speeding convergence and of
 calculating the increased variance due to the missing information. With regard to this hidden
 variance it is my view that in recent years papers dealing with missing-data techniques have paid too
 little attention to it. As a result, I have come across people who, when using an analysis of variance
 package, were content to analyse data, 30 per cent of which was missing, under the assumption that
 it made no difference to the calculated test statistics. The package dealt with the estimation problem
 in an extremely efficient manner but completely ignored the increased variance. I should therefore
 like the authors to comment on the ease with which the hidden variance can be calculated using the
 EM algorithm.

 An item in the paper which I found to be particularly interesting was the concept of using an
 informative prior to provide additional information and I would like to know if the speakers have
 ever applied this in a practical problem. In connection with this I was interested to hear Professor
 Beale speak of using imputed values since I too have been giving some thought to the effect of using
 imputed values, in my case for census and survey data. I wonder than if the authors have ever had
 any thoughts on the use of "hot-deck" and "cold-deck" procedures since these can be regarded as
 using prior information, and in some cases an approach similar to the EM algorithm.

 Mr B. TORSNEY (University of Glasgow): The authors have illustrated the application of their
 EM algorithm in a wide range of statistical problems. The following may be one further example in
 an optimal design problem.

 Problem. Choose J weights Pi subject to pi > 0, ,Pi = 1, the summation being from 1 to J,
 J

 (p) =tr(M-t), M = lpivivT, t>0. (1)
 i=1

 The v''s are the known k x 1 vectors forming the design space. i(p) is (a) increasing

 (ao/@Pi = tvT M-(t+l), vi > 0),

 (b) homogeneous of degree - t, (c) concave.
 The following algorithm, suggested by a result in Fellman (1974), has been formulated by Silvey

 et al. (1976):

 pi(r) (X: pi(r -1) {a0lapi(r -1)}'6, 8 > O.

 The pi(r) are normalized and so stay in the feasible region.
 If any +(p) possesses (a) this increases i(p) when 8 is small, while for any 8 > 0 and small e> 0,

 +(q) > b{p(r - 1)} where q = (1 - e) p(r- 1) + sp(r).
 However, various considerations suggest that 8 = 1 /(t+ 1) is a natural power to use in (1); in

 simple cases this attains the optimum in one step.
 It can be shown that if +(p) possesses (a) and (b) then 8 = 1/(t+ 1) achieves monotonicity if

 Otz(X) > ,() (2)
 where

 p(r - 1), [A = p(r), 0,, (X) = PO fA O) = Ai(aolaAi)ll(t+l)(aolay )tl(t+l)

 This in turn is true by Baum et al. (1970) if +t (?| I .)> f+ (t I p) where 4,(X' IX) = I f1>(X) log
 f? (X'), summing between 1 and J.
 Results so far established are that for any pair X, IL (assuming aolaAi, ab/9,ut exist)
 (i) (2) is true when i(p) = - tr (M-1).

 (ii) Both +"(X) and Qt,(X I j.) have stationary values at X = j? if +(p) possesses (a) and (b).
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 Hence there is the possibility that 8 = 1 /(t + 1) achieves monotonicity for several such functions.
 However, counter-examples exist. Other properties of ?)(p) can be relevant to a natural choice of 3.
 For example, +(p) = det (M), though not concave, is a homogeneous polynomial of degree k with
 positive coefficients. Thus - {det (M)}-1 possesses (a) and (b) with t = k, but 8 = 1 emerges as a
 natural power since this attains the optimum in one step if J = k; it achieves monotonicity by
 Baum and Eagon (1967). This power, however, is a special case of 8 = 1/(t +1) above since
 {tr (M-t)/k}1It -+ {det (M)}-l/k as t -> 0 and a det (M)/lpi = (vw M-1 v?) det (M). The resultant
 algorithm can in fact be shown directly to be an EM algorithm. Can this be done for i(p) in (1)?

 On the question of naming the authors' technique; north of the border we would be content to
 describe it as a wee GEM!

 Dr D. M. TITTERINGTON (University of Glasgow) and Dr B. J. T. MORGAN (University of Kent):
 Speed of convergence is an important factor in judging algorithms. We have recently considered the
 hypothesis of quasi-independence in an m x m contingency table with a missing main diagonal.
 If {aJ} and {pi} represent the row and column probabilities, it turns out that there is choice about
 which version of the EM algorithm to use for estimating parameters, one depending in the E-step
 on both sets of parameters and one each on the {ai} and {pj}. Alternate use of the last two corre-
 sponds to Goodman's (1968) version of iterative scaling. If, however, only the last is used, thereby
 reducing the number of parameters involved in the E-step, it appears empirically that convergence
 is usually faster; see Morgan and Titterington (1977). Further acceleration can often be obtained
 using an iteration of the form

 P2 o P apAr-1() j = 1 ...,.m, rk 1,_1
 where 8>1 and k is the log-likelihood for the observed data, evaluated at {pt-,)}. Often 8> 1
 produces faster convergence than the basic EM algorithm, given by 8 = 1; see also Mr Torsney's
 remarks and Silvey et al. (1976), where an iteration like (1) is used in computing D-optimal designs.

 In the examples we looked at, easily-the quickest method was that of Brown (1974), although it
 may not always be monotonic for 0, in which the missing cells are treated one by one. This behaviour
 seems similar to the superiority, in certain examples, of Fedorov's (1972) algorithm over the
 appropriate EM method (Silvey et al., 1976) for computing D-optimal designs. In each iteration of
 the former a single design weight is changed optimally, instead of changing all weights at once in a
 non-optimal way. We wonder if the idea of reducing each EM iteration to a sequence of stages, each
 of which is an exact maximization in some sense, may accelerate convergence in other applications.

 Mr GORDON D. MURRAY (University of Glasgow): I have been using the EM algorithm a great
 deal recently to estimate the parameters of multivariate normal distributions using incomplete
 samples (Section 4.1.3), and I have found that a considerable practical problem is the existence of
 multiple stationary values. The following example illustrates the kind of problems which can arise.

 Suppose that we have the following data, representing 12 observations from a bivariate normal
 population with zero means, correlation coefficient p and variances a2, o2.

 Variable 1 1 1 -1 -1 2 2 -2 -2 * *

 Variable 2 1 -1 1 -1 * * * 2 2-2 -2

 The asterisks represent values which were not observed. For these data the likelihood has a
 saddle point at p = 0, 2 = c2 = A, and two maxima at p = ?j is 2= c2 - -

 The EM algorithm will converge to the saddle point from a starting point with p = 0, but, as the
 authors point out, this will not be a problem in practice, because a random perturbation will cause
 the algorithm to diverge from the saddle point. The example is also rather artificial in that the two
 local maxima have equal likelihoods. In general there will be a unique global maximum.

 I have run the EM algorithm on many simulated data sets, using two different starting points:
 (1) taking zero means and identity covariance matrix and (2) taking the maximum-likelihood
 estimates based only on the complete observations. The results obviously depend on the pattern of
 missing data, but it is not unusual for about 5 per cent of the cases to converge to different local
 maxima. This technique of course only gives a lower bound on the occurrence of multiple stationary
 points.
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 This may seem rather removed from real life, but the study was in fact motivated when this
 problem arose while I was working on a set of real eight-dimensional data. I obtained two sets of
 estimated parameters which were essentially the same, except for the estimates of one of the
 variances, which differed by a factor of 30!

 This is naturally not a criticism of the algorithm itself, but it should be a warning against its
 indiscriminate application.

 Dr. D. A. PREECE (University of Kent at Canterbury): Dr Nelder has mentioned the advantage
 of introducing the multiplier N/v into the Healy-Westmacott procedure. But I know of no enumera-
 tion of the exceptional circumstances in which the configuration of missing values and the form of
 the analysis are such that the procedure with N/v fails to converge. G. N. Wilkinson has told me
 of an example of such non-convergence, and I have seen a rather degenerate example derived by
 someone else. But I do not know of any theoretical formulation showing exactly what such
 examples are possible. If tonight's authors-or anybody else-could throw light on this, I for one
 should be grateful.

 I should be embarrassed if my name came to be associated with the algorithm incorporating the
 N/v. It seems that different people hit on this improved Healy-Westmacott procedure; I was not
 one of them. I think the earliest account of it is in a book by Pearce (1965, pp. 111-112), and I
 understand that Professor Pearce thought of it some years before the book appeared. When I
 wrote my 1971 paper I was, I regret, unaware that Professor Pearce had obtained the improved
 procedure.

 The multiplier N/v for a two-way analysis also figures in the FUNOR-FUNOM procedure of Tukey
 (1962, pp. 24-25).

 Dr KEITH ORD (University of Warwick): The authors are to be congratulated upon their
 bravery in discussing estimation methods for factor analysis, a topic which still causes some
 statisticians to blow a fuse. One of the difficulties in such situations is that the standard para-
 metrization allows arbitrary orthogonal transformations of the matrix of loadings, P, which do not
 affect the value of the likelihood. To avoid this, previous researchers have found it necessary to
 impose constraints such as

 p3T(72)-1 = ,

 where J is an arbitrary diagonal matrix. I would be interested to learn how the authors method is
 able to avoid such constraints and the computational problems that arise in their wake.

 Mr M. J. R. HEALY (Medical Research Council): On the question of speed of convergence, the
 EM technique as applied to designed experiments is numerically equivalent to the Jacobi method of
 solving simultaneous linear equations. This is known to converge more slowly than the Gauss-
 Seidel method which is in its turn equivalent to the traditional missing-value technique of adjusting
 the replaced values one at a time. There is a very large literature on speeding the convergence of the
 Gauss-Seidel method by "stretching" corrections, under the name of over-relaxation; it would be
 interesting to see whether this could be applied to the Jacobi method.

 The suggested method for factor analysis can be related to that published by Rao (1955). In
 this method, canonical correlations between the observed variables and the "missing" factor
 scores are calculated at each stage of an iteration. Conventional canonical analysis can be calcu-
 lated by an iterative back-and-forth regression technique, and the authors' method can be regarded
 as steps in an inner iterative loop. In such cases it often makes excellent sense not to drive the
 inner iteration to completion. My own very limited experience of Rao's method (and equally those
 of Howe, 1955, and Bargmann, 1957) is that convergence is impossibly slow-the iterative cor-
 rections are small, but they do not seem to get any smaller as the iteration progresses. Could this
 be due to the arbitrary rotation that is involved?

 The following contributions were received in writing after the meeting.

 Mr LEONARD E. BAUM (Institute for Defense Analysis, NJ, USA): In the penultimate paragraph
 of Section 3, the authors write:
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 "Lemma 1 and its consequence Theorem 1 were presented by Baum et al. (1970) in an unusual
 special case (see Section 4.3 below), but apparently without recognition of the broad generality of
 their argument."

 In Baum et al. (1970) we have: let

 P(A) = Ifp(x, A) du(x) and Q(A, A') p(x, A) log p(x, A') d (x).

 Theorem 2.1. If Q(A, A) > Q(A, A) then P(A) >P(A). The inequality is strict unless

 p(x, A) = p(x, A) a.e. [,l].

 With the change of variables and notation A -+ c), A + ci)', log P(A) -* L(i)), p(x, A) -*f(x I 0,
 log p(x, A') -> log f(x 1 c)'), d,u(x) = d(x) for xeX(y), = 0 otherwise, our Q(ci, c)') equals the
 g(y, 4p) Q(4P' I c)) of this paper and hence our Theorem 2.1 and its use with a transformation
 T (= the EM algorithm) in our Theorem 3.1 contains the present paper's Lemma 1 and Theorem 1.

 In the numerous examples of Section 4 of this paper the unseen sample space . is a sample
 space of independent variables so g(y 1 4|) is essentially of the form

 g(y I 1O = II J f(xt I cO) dxt.
 t=1 g(VI)

 In our papers we considered the case X a Markov sample space which contains the case X indepen-
 dent as a special case. In the Markov case

 r r ~T-1
 g(Y I = TJ .. fj f(xt, xt+l I c) dx1 ... dx, rv (VT) t=o

 is not so simple as in the independent case so an additional inductive algorithm is required for
 effective computation of the E step. See the second, third and fourth references listed in this paper.

 Professor W. H. CARTER (Virginia Commonwealth University): Professors Dempster, Laird and
 Dr Rubin are to be commended on the presentation and thorough treatment of an interesting problem.

 As a result of this paper, renewed interest in this algorithm will be generated and numerous
 programs will be written. The difficulties associated with obtaining the properties of maximum-
 likelihood estimators when the estimator cannot be written in closed form are well known. I should
 like to point out that Hartley (1958) indicated a numerical method of estimation based on the
 calculus of finite differences which could be used to obtain variance and covariance estimates of the
 maximum-likelihood estimates obtained by the EM algorithm. Basically, the procedure involves
 estimating the second derivatives of the log-likelihood function from the iterations made to deter-
 mine the root(s) of the likelihood equation(s). Hartley illustrates the method for a single parameter
 and a multiparameter distribution.

 Clearly, the advantage of such a procedure is that it can be incorporated in the computer program
 written to obtain the maximum-likelihood estimates of the parameters so that the final program
 produces, simultaneously, the estimates and estimates of their variances and covariances.

 Professor B. EFRON (Stanford University): This is an excellent paper, difficult for me to criticize
 on almost any grounds, which is fine and good for the authors, but hard on potential critics. I will
 settle for an historical quibble. Let DL1(4O) indicate the Fisher score function based on the complete
 data set x, that is the derivative of the log density with respect to the parameter, and let DLY(4O)
 be the score function based on some statistic y(x). In his 1925 paper Fisher showed that

 DLY(i)) = E.(DLx(4) j y). (1)

 (See p. 717, where the result is used, though in typical Fisherian fashion not explicitly mentioned
 in calculating the loss of information suffered in using an insufficient statistic.)
 For the exponential family (2.1), DL1(4O) = t- E+(t). In this case equation (1) becomes

 DLY(4) = E.O(t I O) - E+(t) (2)
 which is the "striking representation" (2.13).

 Professor STEPHEN E. FIENBERG (University of Minnesota): It is a great pleasure for me to
 have an opportunity to discuss this interesting and important paper. It not only presents a general
 approach for maximum-likelihood estimation in incomplete-data problems, but it also suggests a

 2
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 variety of ways to adapt the approach to complete-data problems as well. I regret being unable to
 hear its presentation, although I did hear informal lectures on the topic by two of the authors about
 one year ago. One of the reasons I was delighted to see these results is that they touch on so many
 seemingly unrelated problems I have worked on in the past, and on several that sit in various stages
 of completion on my office desk.

 In 1971, Haberman noted that the research work on categorical data problems of two of my
 graduate students at the University of Chicago could be viewed in a more general context as prob-
 lems involving frequency tables based on incomplete observation. One of these students was
 obviously working on a missing-data problem but the other student's work had been developed as a
 complete-data problem. By using a representation similar to that used by Dempster, Laird and
 Rubin in the genetics example of Section 1, Haberman showed how seemingly complete data can
 often be represented as incomplete data. The present paper shows that this approach is applicable
 in far more general situations. It should come as no surprise that at least one of the iterative methods
 proposed by Haberman can be viewed as using the EM algorithm. Haberman (1974), in extending
 his earlier work, noted two problems in the case of frequency data which have a direct bearing on
 Theorem 2 of the present paper: (a) even for cases where the likelihood for the complete-data
 problem is concave, the likelihood for the incomplete problem need not be concave, and (b) the
 likelihood equations may not have a solution inside the boundary of the parameter space. In the
 first case multiple solutions of the likelihood equations can exist, not simply a ridge of solutions
 corresponding to a lack of identification of parameters, and in the second case the solutions of the
 likelihood equations occur on the boundary of the parameter space, which is usually out at infinity
 if we consider the problem in terms of the natural parameters c).

 The problem of a solution on the boundary comes up not only in categorical data problems but
 also in factor analysis as considered in Section 4.7. There the boundary problems are referred to as
 improper solutions or Heywood cases, and correspond to zero values for one or more of the residual
 variances T2. In practice, when one is dong factor analysis, it is important to use an algorithm that
 detects these improper solutions after only a few iterations, so that a revised iteration can be
 initiated using the zero estimates initially. The J6reskog algorithm described in Lawley and Maxwell
 (1971) is specifically designed to handle such problems, while it appears that the version of the EM
 algorithm outlined in Section 4.7 may be stopped long before a Heywood case can be recognized.
 Have the authors explored this facet of the problem? Factor analysis in situations with small
 sample sizes also presents examples where multiple solutions to the likelihood equations exist.

 While problems do occur in the use of the EM algorithm, the general formulation of Dempster,
 Laird and Rubin is remarkable in that it leads to an incredibly simple proof of the convergence
 properties. When I worked with a special case of the algorithm (see Chen and Fienberg, 1976), my
 co-author and I were unable to deal properly with the convergence properties. All we were able to
 show was that our procedure converged if at some stage our estimate was sufficiently close to the
 true solution and if the sample size was large. By generalizing the problem the present authors have
 made the problems we encountered disappear!

 The authors discuss aspects of the rate of convergence of the EM algorithm at the end of Section 3,
 but they do not discuss its computational efficiency relative to other algorithms in specific cases
 when iteration is in fact necessary. In many applications the procedure is computationally superior
 to all competitors. In others, however, the EM algorithm is distinctly worse in performance when
 compared with one or more alternative algorithms. For example, when the version of the EM
 algorithm proposed by Brown (1974) is used for estimation in the model of quasi-independence in
 square Ix I contingency tables with missing diagonals, it is distinctly superior to the standard
 iterative proportional fitting algorithm described in Bishop et al. (1975). Yet, when the number of
 missing cells in the I x J is large, the iterative proportional fitting procedure is more efficient than the
 EM algorithm. The beauty of the EM algorithm is its simplicity and generality; thus, we should not be
 surprised at its inefficiency in particular problems. (A similar comment is appropriate for the use
 of iterative proportional fitting as an all-purpose algorithm for contingency table problems.)

 I was especially pleased to see Section 4.5 dealing with hyperparameter estimation since it
 appears to be of use in a problem I am currently exploring, that of characterizing linear forecasts
 and their extensions resulting from the use of multi-stage prior distributions, and approximations
 to the latter using estimates of the hyperparameters. Now that the authors have taught us how to
 recognize such nonstandard applications of their approach, I am sure that their work will lead to
 many new applications in other active areas of statistical research.
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 Professor IRWIN GUTTMAN (University College London and University of Toronto): In
 practice, the idea of the EM algorithm has been used in various places other than those indicated by
 the authors, through the use of the predictive distribution. The predictive distribution of y, given
 the data x, is defined as

 p(y I x) = f(y I 0) p(O x) dO (1)

 where p(O I x) is the posterior of the parameter 0 that controls the distribution of x and the future
 observations y, namely f(- j 0). If a data-gathering process D is used to obtain x, while the data-
 gathering process D' is to be used to generate y, we denote the predictive distribution as

 p(y, D' I x, ID) = f|(y I 0; D') p(O I x; D) dO. (Ila)

 Suppose germane to this problem, the utility function of the act t taken with respect to 0 is u(t, 0).
 Define the average posterior utility as

 U(x, y; D, D') Ju(t(x; y); 0) p(01 x, D; y, D') dO (2)

 where we have acted in (2) as if all the observations x and y are now at hand. The expected part
 of the predictive algorithm says to find

 E(U I x, D) = fUp(y, D' I x, D) dy = g(x, D; D') (3)

 and the maximization part of the predictive algorithm says to choose D' so as to maximize g.
 The applicati-ons have been many and varied-as two examples amongst a host of others, see

 Draper and Guttman (1968) for its use in an allocation problem in sample survey, and Guttman
 (1971) for an application involving optimum regression designs, Indeed, the above is just another
 way of looking at some aspects of what has been called preposterior analysis by Raiffa and Schlaifer
 (1961). The emphasis here is not on parameters, but on predictions (estimation of observations)
 that have optimal properties. Indeed, the above framework allows for missing data, truncation,
 censoring, etc. through the flexible use of the definition of D. Indeed in a forthcoming paper by
 Norman Draper and myself, it has been used in a particular missing-value problem.

 An important point to note here is that the form of g given in (3) may or may not be such that
 sufficient statistics are estimated in the expected part of the predictive algorithm-in principle,
 the above goes through without the need for sufficiency.

 Dr S. J. HABERMAN (University of Chicago): The authors must be congratulated on their wide-
 ranging discussion of the EM algorithm. Although I share their admiration for the versatility and
 simplicity of the procedure, I have ambivalent feelings toward its use. The Newton-Raphson and
 scoring algorithms are competing numerical procedures with both advantages and disadvantages
 relative to the EM algorithm.

 In favour of the EM algorithm are simplicity in implementation and impressive numerical
 stability. However, the Newton-Raphson and scoring algorithms are not especially difficult to
 implement, and they do provide estimates of asymptotic variances. In addition, convergence of the
 EM algorithm is often painfully slow, based on my experience with latent-structure models. In
 contrast, the Newton-Raphson and scoring algorithms generally result in rapid convergence.

 The Newton-Raphson and scoring algorithms can be described in terms of the first two con-
 ditional and unconditional moments of t given cj, just as the EM algorithm can be described in terms
 of the corresponding first cumulants. If 4P, p > 0, is the sequence of approximations generated by
 the algorithm, then by the authors' equation (2.16), the Newton-Raphson algorithm may be
 defined by the equation

 0(v+1) = 4v)+{ V(tI 4|(v)- V(t I y, 4(P))}-l{E(t I y, +( V))-E(tI +(P))},
 and the scoring algorithm may.be defined by the equation

 4 (P+1) = (P) + [V(t I (v))- E{ V(t I y, (v ))I 4 (P)}]-l{E(t I y, (P))-E(t Id(P))}

 = 4P) + [V{E(t I y, (V)) I v(W))]-{E(t I y, +( ))-E(tI |j(v))}.
 Here E{V(t I y, dp(P)) I 4(P)} denotes the expected value of V(t I y, 4(P)) when y has sampling density
 g(y I O~). A similar convention applies to V{E(t I y, 4(v)) 1 d;(P)}.
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 The asymptotic covariance matrix of +* may be estimated by

 { V(t (+*) - V(t Iy, (*)}-i
 if the Newton-Raphson algorithm is used or by [E{ V(t I I ( *}]1 if scoring is used.

 Thus many of the attractive relationships between algorithms and moments of the EM algorithm
 are retained by the older Newton-Raphson and scoring algorithms.

 I assume that the major criterion in a decision to use the EM algorithm should be the extent to
 which estimates of asymptotic variances and covariances are needed. If these estimates are clearly
 needed, then I suspect the EM algorithm is relatively less attractive than if such estimates are only of
 marginal interest. I am curious how the authors view the relative merits of these procedures.

 Professor H. 0. HARTLEY (Texas A & M University): I feel like the old minstrel who has been
 singing his song for 18 years and now finds, with considerable satisfaction, that his folklore is the
 theme of an overpowering symphony. However, I wish the authors would have read my "score"
 more carefully (and I use "score" also in the Fisherian sense). The "score" that I was singing then
 (Hartley, 1958, pp. 181-182) is not confined to the multinomial distribution but covers any grouped
 discrete distribution although a binomial example preceded the completely general formulae as an
 illustration. Incidentally, the case of truncated discrete distributions for which I developed (pp. 178-
 179) an algorithm analogous to the EM algorithm does not fall within the framework of the author's
 incomplete data specification (their equation (1.1)). Since it is an essential feature of any "algorithm"
 that its formulae can be numerically implemented, I confined my 1958 paper to discrete distributions
 (when the E operator is a simple sum) but in the 1971 paper (with R. R. Hocking) we extended the
 E operator to continuous distributions with the help of formulae for numerical integration. The
 authors' formulation of an incomplete-data likelihood is certainly more comprehensive. On the
 other hand, they do not discuss the feasibility of the numerical implementation of the algorithms.
 (See, for example, the general E-step which involves the computation of an r-parametric function
 depending on +' using a conditional likelihood on +, y.)

 Their Theorems 2-4 specify convergence conditions for the EM algorithm which are more
 restrictive than the one given by us in our 1971 paper (pp. 806-808). Specifically the authors assume

 that the eigenvalues of their D20 Q(O(vP+l) I +(v)) are bounded away from zero. No such assumption
 is made in our proof and in fact usually such an assumption is certainly not satisfied identically in
 the parameter space except for the exponential family quoted by them. Their references to "ridges"

 are not clear. For if we define "ridges" by the existence of a function h(o1, ..., k) of (say) the first
 k > 2 elements of + such that

 f(x I f(x I h(ol, O+ k)s Ok+lD ... ir)
 then the above matrix D20 has a rank 6 r - k + 1 < r and its eigenvalues are clearly not bounded
 away from zero. This is a consequence of the authors' equation (3.13) and of the interchangeability
 of the operators El y, i'P) and D10, D20 operating on logf(x I O~). Such "ridges" would, of course,
 also violate the main assumption we have made namely that A = log g(y I 5) cannot have two
 separate stationary points in the +-space with identical values of A. However, this latter condition
 is only violated with probability zero if ridges of the above type are excluded.

 Finally, I would like to draw the authors' attention to our method of variance estimation
 (pp. 185-188 in Hartley, 1958; pp. 796-798 in Hartley and Hocking, 1971) which utilizes the
 iterates in the EM algorithm directly for the estimation of the elements of the variance matrix and
 this potential of the EM algorithm is important in justifying its computational efficiency compared
 with competitive ML estimation procedures.

 Professor S. C. PEARCE (University of Kent): I share the general pleasure at the width of
 application of this paper but I join with those who fear possible slowness of convergence of the
 EM algorithm. As Dr Nelder has pointed out, one case where the situation is well explored is the
 fitting of missing values in a designed experiment. As I understa6nd him, the algorithm gives the
 well-known method of Healy and Westmacott (1956), which always converges, though it can be
 very slow. The accelerated method in which the residual is multiplied by n/v has been known for a
 long time by many people, as Dr Nelder and Dr Preece remark, and pathological cases are known
 in which it will lead to divergence. However, at East Malling we used it as a regular procedure in
 all computer programs written from about 1961 onwards and I cannot recall any instance of its
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 having diverged in practical use, at least not before I left early in 1975. I do not know what has
 happened since. Anyhow, there is another accelerated method that does ensure convergence in a

 single cycle if only one plot is missing. I refer to the use of the multiplier, lle, where e is the error
 sum of squares from the analysis of variance of p, a pseudo-variate having one for the plot in
 question and zero for all others (Pearce and Jeffers, 1971; Rubin, 1972). It shows that the EM
 algorithm, though of general application, is not optimal.

 Professor S. R. SEARLE (Cornell University): My comments are confined largely to Section 4.4,
 dealing with variance components. Several phrases there are strange to the variance components

 literature: (i) "making the xI, x2, ..., x,k also normally distributed ... converts the model ... to a
 random effects model": random models are not necessarily normal; (ii) "compute the mean ... of the
 conditional normal distribution of the xi given y": why will it be anything other than null, in view
 of 4.4.4 and 4.4.5 ? y of 4.4.1 needs a mean IL; (iii) "where (X2, X3, ..., Xk+I) are regarded as missing":
 how can they be when their variances are being estimated ?-unobservable, yes, but surely not

 missing; (iv) "except that a, is fixed at oo"; fixed effects usually have zero, not infinite, variance.
 The authors' application of EM to estimating variance components displays no advantages for

 EM over methods described by Hemmerle and Hartley (1973) and Hemmerle and Lorens (1976),
 which are directly suited to variance components models and take account of their special pro-
 perties-whereas EM does not. In particular, EM pays no attention to computational difficulties
 brought about by the ri being very large in many of the data sets from which variance components
 estimates are required. Hemmerle and Lorens (1976), for example, show how to discount this
 effect by a factor of 4.

 General properties of EM are described in Section 3. It is a pity that their usage and importance
 to special cases were not indicated for the examples of Section 4.

 Dr R. SUNDBERG (Royal Institute of Technology, Stockholm): I want to congratulate the
 authors on an important and brilliant paper. The great value of their generalizations and unifica-
 tions is obvious, and the paper will certainly stimulate more frequent use of the EM algorithm. But
 because of this, a warning against uncritical faith in the method may be appropriate.

 After some initial steps the deviation from a local maximum point decreases at each step by a

 factor which approximately equals the largest eigenvalue, Ama, say, of (3.15) (or (3.27)), expressing
 the maximal relative loss of information due to incompleteness. In applications Amax: is often close
 to 1, and in my own experience, from applications to mixtures and to convolutions, A.,, has some-
 times turned out to be so close to 1 (> 098, say) that I have judged the method to be impracticable.
 For instance, with data from a five-parametric mixture of two normals it can be seen from Fig. 3 in
 Sundberg (1976) that the EM method will require a very large number of steps when (at + a2)/
 I l -U2 1>1. When this occurs the formulation of the stopping rule is crucial and numerical
 extrapolation is difficult. It does not mean that the ML estimation principle has broken down in
 these cases, only that very large samples have been required for precise estimates.

 The Newton-Raphson method and the scoring method do not have this disadvantage for large
 values of Aax, but instead they entail matrix inversion problems. However, the inverse of the
 information matrix is anyhow desired when the final estimates have been attained. Therefore I

 want to advocate the use of these two methods when A., seems to be close to 1.

 Dr E. A. THOMPSON (University of Cambridge): I would like to mention a couple of cases
 where the EM algorithm arises in genetics. One is the classical "gene-counting" method of estimating
 allele frequencies from phenotype frequencies. The number of genes of each allelic type are
 estimated using the phenotype numbers and assumed allele frequencies, and new allele frequencies
 are then calculated from these numbers. This is essentially a case of the multinomial example
 discussed in the paper.

 A more interesting example is given by the problem of estimating evolutionary trees from
 population allele frequencies. I refer to the modification of the model of Edwards (1970) discussed
 by Thompson (1975). There we have a bifurcating tree model of population evolution, and, as the
 population allele frequencies change under the action of random genetic drift, the populations
 perform Brownian motion in a Euclidean space, in which the co-ordinates are certain functions of
 these allele frequencies. One part of the problem is to estimate the times of split and the position
 of the initial root, given the final population positions and assuming a given tree form.
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 On p. 68 of Thompson (1975) an iterative solution is proposed. Although at each cycle the
 maximization with regard to the root position is carried out explicitly in terms of the data and
 current estimates of the splitting times, the method proposed for estimating these times is precisely
 an EM algorithm. If the positions in the gene-frequency space of all populations at the instants of
 splitting of any single population are regarded as the missing data, we have, for a given root position,
 a particularly simple regular exponential family. The natural parameters are the inverses of the
 time intervals between splits, the sufficient statistics are the "total squared distances travelled in that
 time interval by all populations then existent" (p. 64), and their unconditioned expectations are
 simple multiples of the time intervals to be estimated.

 I wish I had known of the EM algorithm in 1972; it would have greatly aided my discussions of
 uniqueness and convergence problems, at least in those cases where a root in the interior of the
 parameter space exists.

 Mr ROBIN THOMPSON (ARC Unit of Statistics, Edinburgh): Whilst schemes such as (4.4.8) are
 very appealing for variance component estimation their convergence can be painfully slow and I have
 found that schemes using second derivatives are more satisfactory. The theory of Section 3 is
 useful in explaining why the convergence can be slow. Consider a random effects model for a one-
 way classification with n observations in each group and let y denote the ratio of the between group
 variance component to the within group variance. The largest root of DM(c1*) is approximately
 max [1 - {ny/(ny +1)}2, l/n]. This tends to 1 as ny tends to zero. On the other hand, if ny is large
 the largest root is of the order I /n and estimation using (4.4.8) should converge rapidly.

 Professor B. TURNBULL (Cornell University): The authors have provided a very elegant and
 comprehensive treatment of maximum-likelihood estimation with incomplete data. I regret that
 I arrived in London one week too late to hear the presentation and discussion.

 Related to the problems of estimation are those of goodness-of-fit with incomplete data. They
 appear to be especially important in reliability and recidivism studies. For grouped and randomly
 censored data, Lionel Weiss and myself (1976) have proposed a likelihood ratio test. In the
 numerator of the ratio appears the maximum likelihood under the postulated family of parametric
 models, and the denominator contains the likelihood based on the empirical distribution function.
 Both likelihoods are calculated using the EM algorithm or, equivalently, "self-consistency" (Turn-
 bull, 1976). The resulting statistic is shown to have an asymptotic chi-squared distribution with the
 appropriate non-centrality parameter under contiguous alternatives. The test is applied in a study
 of marijuana usage in California high schools where the data are both grouped and doubly censored.

 Perhaps the lesser known papers of Batschelet (1960) and Geppert (1961) should be added to a
 list of references concerning maximum-likelihood estimation in incomplete contingency tables.

 It should be noted that in many problems it is hard to justify the assumption that the censoring
 mechanism is independent of the data (observed or unobserved), e.g. losses to follow-up in medical
 trials. In such cases of "prognostic censoring", it seems that little can be done (Tsiatis, 1975;
 Peterson, 1975). Presumably two "extreme" analyses, one optimistic and one pessimistic, could be
 performed. Similar dependent censoring can occur in cross-over studies when a subject, who is
 faring poorly on the placebo, is switched onto the treatment prematurely.

 The authors replied in writing, as follows:

 We thank the many discussants for their stimulating and constructive remarks. Our response is
 mainly organized around themes developed by each of several discussants.

 Many discussants express interest in speeding the rate of convergence of the EM algorithm.
 Dr Nelder, Dr Preece, Dr Pearce and Mr Healy point out that the rate of convergence of the EM
 can often be improved in the special case of missing values in ANOVA by "stretching" procedures,
 although apparently at the cost of sacrificing sure convergence (Hemmerle, 1974, 1976). We sug-
 gested in Section 3 that Aitken's acceleration routine may be useful, and Professor Smith suggests a
 method of improving on Aitken's routine for a single parameter. How to implement such methods
 routinely in multi-parameter problems is not clear.

 Dr Little gives an interesting example which demonstrates that the choice of "complete" data
 can influence the rate of convergence, the reason being that reducing the fraction of missing infor-
 mation speeds convergence. Specifically,

 DM(4*) = D2 H(cj* 1 c*) {D2 L(cj*) + D2 H(c1* I
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 where D2L(4*) is fixed by the incomplete-data specification and the observed value y, but
 D2 H()* 4 +*) is influenced by the method of completing the data. A judicious choice of complete
 data will (a) reduce the maximum eigenvalue of DM(4*), and (b) allow easy computation of the
 E- and M-steps. Unfortunately (a) and (b) may work at cross-purposes, as in the case of a truncated
 sample from a normal population, where treating the number of truncated observations as missing
 slows convergence but greatly eases the M-step.

 We are indebted to Mr R. Thompson for drawing attention to a vexing situation which comes
 up often in variance components estimation, namely, when a maximum-likelihood estimate of some
 variance component is zero, the rate of convergence of EM also goes to zero. A similar difficulty
 arises in estimating uniquenesses in factor analysis. These uniquenesses are also variance com-
 ponents, and when their estimates go to zero, the situation is known as the Heywood case (cf.,
 Professor Fienberg's discussion). A heuristic explanation of the vanishing rate of convergence in
 these examples is that as a variance goes to zero, the information about the variance also goes to
 zero, and this vanishing information implies a vanishing rate of convergence.

 As suggested by Professor Haberman, Dr Little and Dr Sundberg, it is important to remember
 that Newton-Raphson or Fisher-scoring algorithms can be used in place of EM. The Newton-
 Raphson algorithm is clearly superior from the point of view of rate of convergence near a maximum,
 since it converges quadratically. However, it does not have the property of always increasing the
 likelihood, and can in some instances move towards a local minimum. Consequently, the choice of
 starting value may be more important under Newton-Raphson. In addition, the repeated evalua-
 tion and/or storage of the second derivative matrix can be infeasible in many problems. For
 complete-data problems the scoring algorithm will be equivalent to Newton-Raphson if the second
 derivative of the log-likelihood does not depend on the data (as with exponential family models).
 In these cases, the scoring algorithm also has quadratic convergence. However, scoring algorithms
 often fail to have quadratic convergence in incomplete-data problems since the second derivative
 often does depend upon the data even for exponential family complete-data models.

 One advantage of Newton-Raphson or Fisher-scoring is that an estimate of the asymptotic
 covariance matrix is a by-product of the computation of cj*. Professors Carter and Hartley speak
 to a question raised by Mr Orchard in remarking that Hartley and Hocking (1971) noted the
 possibility of obtaining an estimate of the asymptotic covariance matrix from successive iterates of
 the EM algorithm. As Professor Smith notes, an estimated asymptotic variance is readily obtained
 in the single parameter case as

 cr$*/( - A),

 where &6,* is the complete-data asymptotic variance estimate and A is the ratio (#W +1) - b*)/(b() _
 for large p. Of course it is often the case in multi-parameter problems that preliminary estimates are
 used for likelihood ratio testing, and corresponding estimates of the variances are not necessary.

 Mr Orchard suggests that further details relating to specific examples, both those we mentioned
 and others, are very much worth pursuing. We of course agree. Mr Tornsey, Dr E. A. Thompson
 and Professor Turnbull all indicate directions for such work. We are continuing to work actively
 along these lines. Laird (1975) studies variance estimation for random parameters in log-linear
 models for contingency tables. Laird (1976) discusses non-parametric estimation of a univariate
 distribution where observations have errors whose distribution is specified in parametric form.
 Dempter and Monajemi (1976) present further details of variance components estimation from the
 EM standpoint, and we believe they reply to many of the issues raised by Professor Searle. Papers
 involving iteratively reweighted least squares (DLR), factor analysis (DR) and rounding error in
 regression (DR) are nearing completion.

 Several discussants question the usefulness of the general definition of the EM given in equation
 (2.17) and successive lines. The essence of the question is that an algorithm is undefined unless the
 specific computational steps are enumerated in such a way that they can be numerically imple-
 mented. Professor Hartley points out that the E-step is most easily implemented when the dis-
 tributions are discrete. In continuous exponential families cases, there are sometimes simple
 analytic expressions for the necessary expectations and for a(4), but, in general, specification of the
 E-step for continuous distributions requires numerical integration. Note that both E{t I 4p), y} and
 a(cO) are defined as integrals, but over different spaces. Dr Nelder is generally right to assert that
 unless the parametric space Q is discrete, Q(4 4l +)) can be evaluated numerically only selectively
 at points on a grid, and similarly we accept Beale's remark, "... division of the method into separate
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 E and M steps is quite impractical". In general, the computational task of passing from 4") to
 c4(v+l) will itself be iterative and will involve a sequence of steps 4P'r) for r = 1, 2, .... An important
 problem is to minimize the number of points 4) where Q(4) I ce)) is computed during the inner
 loop. That is, efficient mixing of E- and M-steps is required.

 It thus appears that the strict separation of E- and M-steps is numerically feasible only when the
 M-step is rather easily computable given the expectations of a finite number of sufficient statistics.
 We used the E-step in our general formulation as a separate entity chiefly because of the statistical
 principle that it expresses: the idea is to maximize the estimated complete-data log-likelihood as
 though it were the actual log-likelihood.

 Some of the comments advising against uncritical use of EM algorithms bear not on the existence
 of better algorithms but rather on the question of whether maximum likelihood is a good method
 in specific applications. Although we did not discuss good and bad statistics in our paper, we
 certainly share the concern that the availability of easy computer methods may lead to bad practice
 of statistics. Statisticians who use likelihood methods have a responsibility to assess the robustness
 of their conclusions against failures in the specific parametric models adopted. Even accepting the
 parametric forms, there are reasons to be suspicious of routine use of maximum likelihood,
 especially when a large number of parameters is involved. To take an example raised by Beale,
 suppose a variable Y is to be predicted from a substantial number of independent variables
 X1, X2, ..., X, when it is assumed that all the variables are jointly normally distributed. If the
 ratio of sample size n to p is not large, then maximum likelihood gives an estimate of the residual
 variance of Y that is badly biased. With complete data, there is a standard correction, whereby
 the residual sum of squares is divided by n -p -1 instead of n but, as far as we know, there is no
 such standard correction available when a substantial amount of data in the X matrix is missing.
 One important logical approach to improving maximum likelihood in such situations is to model
 the parameters, that is, to regard the parameters as randomly drawn from a distribution which
 itself has relatively few parameters. Factor analysis seems to us to be especially in need of treatment
 of this kind. We share with Mr Orchard interest in practical applications of these more Bayesian
 approaches.

 Some of the purely numerical problems of EM are symptomatic of difficult statistical problems.
 We enjoyed Murray's simple example of multiple maxima, but more important is his remark that
 multiple maxima occur frequently in practice. The phenomenom is well known in the area of
 estimating mixtures. Multiple maxima suggest that the familiar quadratic approximation to log-
 likelihood may not be adequate, so that the shape of the likelihood surface needs investigating, and
 we should not accept as adequate a few standard summary statistics based on derivatives at the
 maxima.

 We did not intend to suggest that the mathematical results of Baum et al. (1970) are of limited
 mathematical generality, but only that the wide range of application of these results to statistical
 problems was not recognized in their article.

 We wish to reiterate our debt to Professor Hartley, who is the originator of many of the ideas
 reviewed in our paper. We think that we have brought the techniques into better focus, clarified the
 mathematics, and shown that the range of important examples is substantially greater than was
 previously thought. As Professor Efron points out, R. A. Fisher long ago used the basic first
 derivative relation of Sundberg (1974) in the special context of inefficient statistics, but without the
 specific application to incomplete data problems as discussed by Hartley.

 We are less happy with some of Professor Hartley's technical comments. For example, he
 asserts that the treatment of truncated distributions in his 1958 paper does not fall within our
 framework, but in fact our paper contains a specific technical contribution showing how the case
 of truncation does fall within our framework. This work begins in the fifth paragraph of Section
 4.2, and treats a general form of truncation including Hartley's example as a special case.

 We believe that our references to "ridges" are clear, referring in all cases to ridges in the actual
 likelihood g(y l 4O). Obviously when there are ridges in f(x l 4r) the parameters in the complete-
 data model are not identifiable, and the M-step is essentially undefined. We regard this case as
 uninteresting. Hartley and Hocking (1971) assume there is no ridge in g(y l 4O), and we point out
 that convergence generally obtains even when this condition fails. Our best example is the factor
 analysis model. Mr Healy specifically, and Dr Ord implicitly, ask us whether the nonuniqueness of
 the specific basis chosen for factors interferes with convergence of the algorithm. The answer is
 simply "no", because the steps of the algorithm are defined in a coordinate-free way. Our
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 convergence proofs merely generalize what obviously holds in the special case of factor analysis.
 Theorems 2 and 3 of Hartley and Hocking (1971) prove convergence of the EM algorithm under
 conditions which are much more restrictive than our conditions. As Mr Beale remarks, our
 Theorem 1 together with an assumption of bounded likelihood obviously implies the existence of a
 convergent subsequence. Our further theorems specify nontrivial conditions which are often
 verifiable and which rule out multiple limit points.
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