
nature biotechnology volume 29 number 11 november 2011 987

pr imer

Phillip E. C. Compeau and Glenn Tesler
are in the Department of Mathematics,
University of California San Diego, La Jolla,
California, USA, and Pavel A. Pevzner is in
the Department of Computer Science and
Engineering, University of California
San Diego, La Jolla, California, USA.
e-mail: ppevzner@ucsd.edu

How to apply de Bruijn graphs to genome
assembly
Phillip E C Compeau, Pavel A Pevzner & Glenn Tesler

A mathematical concept known as a de Bruijn graph turns the formidable challenge of assembling a contiguous
genome from billions of short sequencing reads into a tractable computational problem.

The development of algorithmic ideas
for next-generation sequencing can be

traced back 300 years to the Prussian city of
Königsberg (present-day Kaliningrad, Russia),
where seven bridges joined the four parts of the
city located on opposing banks of the Pregel
River and two river islands (Fig. 1a). At the
time, Königsberg’s residents enjoyed strolling
through their city, and they wondered if every
part of the city could be visited by walking
across each of the seven bridges exactly once
and returning to one’s starting location.
The solution came in 1735, when the great
 mathematician Leonhard Euler1 made a
 conceptual breakthrough that would solve
this ‘Bridges of Königsberg problem’. Euler’s
first insight was to represent each landmass as
a point (called a node) and each bridge as a
line segment (called an edge) connecting the
appropriate two points. This creates a graph—a
network of nodes connected by edges (Fig. 1b).
By describing a procedure for determining
whether an arbitrary graph contains a path
that visits every edge exactly once and returns
to where it started, Euler not only resolved
the Bridges of Königsberg problem but also
 effectively launched the entire branch of
 mathematics known today as graph theory2.

Since Euler’s original description, the use
of graph theory has turned out to have many

additional practical applications, most of
which have greater scientific importance
than the development of walking itineraries.
Specifically, Euler’s ideas were subsequently
adapted by Dutch mathematician Nicolaas de
Bruijn to find a cyclic sequence of letters taken
from a given alphabet for which every possible
word of a certain length (k) appears as a string
of consecutive characters in the cyclic sequence
exactly once (Box 1 and Fig. 2). Application
of the de Bruijn graph has also proven invalu-
able in the field of molecular biology where
researchers are faced with the problem of
assembling billions of short sequencing reads
into a single genome. In the following article,
we describe the problems faced when con-
structing a genome and how the de Bruijn
graph approach can be applied to assemble
short-read sequences.

Problems with alignment-based assembly
To illustrate why graphs are useful for
genome assembly, consider a simple exam-
ple with five very short reads (CGTGCAA,
ATGGCGT, CAATGGC, GGCGTGC and

TGCAATG) sequenced from a small circular
genome, ATGGCGTGCA (Fig. 3a). Current
next-generation sequencing methods produce
reads that vary in length, but the most popular
technology generates ~100-nucleotide reads. A
straightforward method for assembling reads
into longer contiguous sequences—and the
one used for assembling the human genome3,4
in 2001 as well as for all other projects based
on Sanger sequencing—uses a graph in which
each read is represented by a node and over-
lap between reads is represented by an arrow
(called a ‘directed edge’) joining two reads. For
instance, two nodes representing reads may
be connected with a directed edge if the reads
overlap by at least five nucleotides (Fig. 3b).

Visualizing an ant walking along the edges
of this graph provides an aid for understand-
ing a broad class of algorithms used to derive
insights from graphs. In the case of genome
assembly, the ant’s path traces a series of
overlapping reads, and thus represents a can-
didate assembly. Specifically, if the ant fol-
lows the path ATGGCGT → GGCGTGC →
CGTGCAA → TGCAATG → CAATGGC →

Figure 1 Bridges of Königsberg problem. (a) A map of old Königsberg, in which each area of the city is
labeled with a different color point. (b) The Königsberg Bridge graph, formed by representing each of
four land areas as a node and each of the city’s seven bridges as an edge.

a b

©
 2

01
1

N
at

u
re

 A
m

er
ic

a,
 In

c.
 A

ll
ri

g
h

ts
 r

es
er

ve
d

.

988 volume 29 number 11 november 2011 nature biotechnology

the computational problem of finding a
Hamiltonian cycle belongs to a class of prob-
lems that are collectively called NP-Complete
(see ref. 2 for further background). To this
day, some of the world’s top computer scien-
tists have worked to find an efficient solution
to any NP-Complete problem, with no suc-
cess. What makes their failure doubly frus-
trating is that no one has even been able to
prove that NP-Complete problems are intrac-
table; efficient solutions to these problems
may actually exist, but such solutions have
not yet been discovered.

Scalable assembly with de Bruijn graphs
As noted in the previous section, finding a
cycle that visits all nodes of a graph exactly
once (called the Hamiltonian cycle problem)
is a difficult computational problem; how-
ever, as we will soon see, finding a cycle that
visits all edges of a graph exactly once is much
easier. This algorithmic contrast has moti-
vated computer scientists to cast DNA frag-
ment assembly as such a problem. Instead of
assigning each k-mer contained in some read
to a node, we will now assign each such k-mer
to an edge. This allows the construction of a
‘de Bruijn graph’ as follows. First, form a node
for every distinct prefix or suffix of a k-mer,
meaning that a given sequence of length k–1

k-mer to another using a directed edge if the
suffix of the former equals the prefix of the
latter—that is, if the two k-mers completely
overlap except for one nucleotide at each end
(Fig. 3c). Third, look for a Hamiltonian cycle,
which represents a candidate genome because
it visits each detected k-mer; moreover, that
path will also have minimal length because
a Hamiltonian cycle travels to each k-mer
exactly once.

This method, however, is not as easy to
implement as it might seem. Imagine attempt-
ing to create a similar graph for a single run
of an Illumina (San Diego) sequencer that
generates many reads. A million (106) reads
will require a trillion (1012) pairwise align-
ments. A billion (109) reads necessitate a
quintillion (1018) alignments. What’s more,
there is no known efficient algorithm for
finding a Hamiltonian cycle in a large graph
with millions (let alone billions) of nodes. The
Hamiltonian cycle approach5,6 was feasible for
sequencing the first microbial genome7 in 1995
and the human genome in 2001, as well as for
all other projects based on Sanger sequenc-
ing. Even so, the computational burden of this
approach was so large that most next-gener-
ation sequencing projects have abandoned it.

And here is where genome sequencing
faces the limits of modern computer science:

ATGGCGT, its walk induces a ‘Hamiltonian
cycle’ in our graph, which is a path that
travels to every node exactly once and ends at
the starting node, meaning that each read will
be included once in the assembly. The circular
genome ATGGCGTGCA, which is computed
by concatenating the first two nucleotides in
each read in such a Hamiltonian cycle, con-
tains all five reads and thus reconstructs the
original genome (although we may have to
‘wrap around’ the genome, for example, to
locate CAATGGC in ATGGCGTGCA).

Modern assemblers usually work with
strings of a particular length k (k-mers),
which are shorter than entire reads (see
Box 2 for an explanation of why research-
ers prefer k-mers to reads). For example, a
100-nucleotide read may be divided into 46
overlapping 55-mers. The Hamiltonian cycle
approach can be generalized to make use of
k-mers by constructing a graph as follows.
First, from a set of reads, make a node for
every k-mer appearing as a consecutive sub-
string of one of these reads (e.g., in Fig. 3,
ATG, TGG, GGC, GCG, CGT, GTG, TGC,
GCA, CAA and AAT). Second, given a
k-mer, define its ‘suffix’ as the string formed
by all its nucleotides except the first one and
its ‘prefix’ as the string formed by all of its
nucleotides except the last one. Connect one

Box 1 Origin of de Bruijn graphs

In 1946, the Dutch mathematician Nicolaas de Bruijn became
interested in the ‘superstring problem’12: find a shortest circular
‘superstring’ that contains all possible ‘substrings’ of length
k (k-mers) over a given alphabet. There exist nk k-mers in an
alphabet containing n symbols: for example, given the alphabet
comprising A, T, G and C, there are 43 = 64 trinucleotides. If our
alphabet is instead 0 and 1, then all possible 3-mers are simply
given by all eight 3-digit binary numbers: 000, 001, 010, 011,
100, 101, 110, 111. The circular superstring 0001110100
not only contains all 3-mers but also is as short as possible, as
it contains each 3-mer exactly once. But how can one construct
such a superstring for all k-mers in the case of an arbitrary value
of k and an arbitrary alphabet? De Bruijn answered this question
by borrowing Euler’s solution of the Bridges of Königsberg problem.
Briefly, construct a graph B (the original graph called a de Bruijn
graph) for which every possible (k – 1)-mer is assigned to a node;
connect one (k – 1)-mer by a directed edge to a second (k – 1)-
mer if there is some k-mer whose prefix is the former and whose
suffix is the latter (Fig. 2). Edges of the de Bruijn graph represent
all possible k-mers, and thus an Eulerian cycle in B represents a
shortest (cyclic) superstring that contains each k-mer exactly once.
By checking that the indegree and outdegree of every node in B
equals the size of the alphabet, we can verify that B contains an
Eulerian cycle. In turn, we can construct an Eulerian cycle using
Euler’s algorithm, therefore solving the superstring problem. It
should now be apparent why the ‘de Bruijn graph’ construction described in the main text, which does not use all possible k-mers as edges
but rather only those generated from our reads, is also named in honor of de Bruijn.

1001

1100

0000 11111010

0101

0011

0110

11010100

0111

11101000

0001

1

2

3

4

5

6

7 9

8

10

11

12
1315

14

16

0010 1011
011

110100

001

000 010 101 111

Figure 2 De Bruijn graph. The de Bruijn graph B for k = 4 and a two-
character alphabet composed of the digits 0 and 1. This graph has an
Eulerian cycle because each node has indegree and outdegree equal to 2.
Following the blue numbered edges in order from 1 to 16 traces an
Eulerian cycle 0000, 0001, 0011, 0110, 1100, 1001, 0010, 0101,
1011, 0111, 1111, 1110, 1101, 1010, 0100, 1000. Recording
the first character (in boldface) of each edge label spells the cyclic
superstring 0000110010111101.

pR ImER
©

 2
01

1
N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

nature biotechnology volume 29 number 11 november 2011 989

states that a connected directed graph has an
Eulerian cycle if and only if it is balanced. In
particular, Euler’s theorem implies that our
de Bruijn graph contains an Eulerian cycle as
long as we have located all k-mers present in
the genome. Indeed, in this case, for any node,
both its indegree and outdegree represent the
number of times the (k–1)-mer assigned to that
node occurs in the genome.

To see why Euler’s theorem must be true,
first note that a graph that contains an Eulerian
cycle is balanced because every time an ant
traversing an Eulerian cycle passes through a
particular vertex, it enters on one edge of the
cycle and exits on the next edge. This pairs up
all the edges touching each vertex, showing that
half the edges touching the vertex lead into it
and half lead out from it. It is a bit harder to see
the converse—that every connected balanced

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there

exists a path between every two nodes (called
connected graphs). He proved that a connected
graph with undirected edges contains an
Eulerian cycle exactly when every node in the
graph has an even number of edges touching
it. For the Königsberg Bridge graph (Fig. 1b),
this is not the case because each of the four
nodes has an odd number of edges touching
it and so the desired stroll through the city
does not exist.

The case of directed graphs (that is, graphs
with directed edges) is similar. For any node
in a directed graph, define its indegree as the
 number of edges leading into it and its outdegree
as the number of edges leaving it. A graph in
which indegrees are equal to outdegrees for
all nodes is called ‘balanced’. Euler’s theorem

(e.g., AT, TG, GG, GC, CG, GT, CA and AA)
can appear only once as a node of the graph.
Then, connect node x to node y with a directed
edge if some k-mer (e.g., ATG) has prefix x (e.g.,
AT) and suffix y (e.g., TG), and label the edge
with this k-mer (Fig. 3d; in Box 3, we describe
how this approach was originally discussed in
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of
the graph (as before), it now attempts to visit
every edge of the graph exactly once. Sound
familiar? This is exactly the kind of path that
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also
spells out a candidate genome; for each edge
that the ant traverses, one records the first

Figure 3 Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) modern short-read assembly algorithms construct a
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix.
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the
computationally expensive task of finding a Hamiltonian cycle.

G

G
A

T

C
A T

G

C
G

CGTGCAA

ATGGCGT

CAATGGCGGCGTGC

TGCAATG

ATGGCGT

GGCGTGC

CGTGCAA

TGCAATG

CAATGGC

ATGGCGTGCAATGGCGT
ATGGCGT

Short-read
sequencing

Genome:

Vertices are k-mers
Edges are pairwise alignments

Vertices are (k 1)-mers
Edges are k-mers

a

c
1

2

3

4

56

7

8

9

10

d
AT

TG

GG

GC

CG

GT

CA

AA

3

45

6 7

8

1

2
9

10

ATG

TGG

GGC

GCGCGT

GTG
TGC

GCA

CAA

AAT
ATG

TGG

GGC

GCG

CGT

GTG

TGC

GCA

CAA

AAT

ATG
ATGGCGTGCAATG

b

Genome:

Hamiltonian cycle
Visit each vertex once

(harder to solve)

Eulerian cycle
Visit each edge once

(easier to solve)

1

2

3

4

5

GGC

TGG

ATG

AAT

CAA

GCA

TGC
GTG

GCG

CGT

k-mers from edgesk-mers from vertices

pR ImER
©

 2
01

1
N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

990 volume 29 number 11 november 2011 nature biotechnology

the ant has found an Eulerian cycle! If this cycle
does not traverse all of the edges, Euler sent
another ant to randomly traverse unexplored
edges and thereby to trace a second cycle in the
graph. Euler further showed that the two cycles
discovered by the two ants can be combined

and Euler noticed that because the graph is
balanced, this node where the ant gets stuck
is exactly the vertex where it started, no matter
how the ant traveled through the graph. This
implies that the ant has completed a cycle; if
this cycle happens to traverse all edges, then

graph contains an Eulerian cycle. To prove this
fact, Euler sent an ant to randomly explore the
graph under a single constraint: the ant cannot
traverse a previously traversed edge. Sooner or
later, the ant must get stuck at a certain node
(with all outgoing edges previously traversed)

Box 2 Practical strategies for applying de Bruijn graphs

In practice, attempting to apply de Bruijn graphs to experimental data is not a straightforward procedure. We describe some key
computational techniques that have been devised to address the practical challenges introduced by errors and quirks in current
sequencing technologies, as well as to resolve the complexities created by repeat-rich genomes. For instance, the astute observer
will have noticed that the de Bruijn method for fragment assembly relies upon four hidden assumptions that do not hold for next-
generation sequencing. We took for granted that we can generate all k-mers present in the genome, that all k-mers are error free, that
each k-mer appears at most once in the genome and that the genome consists of a single circular chromosome. For example, Illumina
technology, which generates 100-nucleotide long reads, may miss some 100-mers present in the genome (even if the read coverage is
high) and the 100-mers that it does generate typically have errors.

Generating (nearly) all k-mers present in the genome. Reads of 100-mers generated by Illumina technology capture only a small
fraction of 100-mers from the genome (even for samples sequenced to high coverage), thus violating the key assumption of de Bruijn
graphs. However, if one breaks these reads into shorter k-mers, the resulting k-mers often represent nearly all k-mers from the genome
for sufficiently small k. For example, de Bruijn graph–based assemblers may break every 100-nucleotide read into 46 overlapping 55-
mers and further assemble the resulting 55-mers. Even if some 100-mers occurring in the genome are not generated as reads, this
‘read breaking’ procedure13 ensures that nearly all 55-mers appearing in the genome are detected. In the example shown in Figure 3,
the five reads do not account for all 7-mer substrings of the genome. But they do contain all 3-mers present in the genome, and this is
sufficient to reconstruct the genome.

Handling errors in reads. Each error in a read creates a ‘bulge’ in the de Bruijn graph (Supplementary Fig. 1), complicating assembly. To
make matters even worse, in a genome with inexact repeats (e.g., two regions differing by a single nucleotide or other small variation),
reads from the two repeat copies will also generate bulges in the de Bruijn graph. An approach for ‘error correcting’ reads, in which
errors are resolved before even beginning assembly, was proposed14 in 2001, and it is now commonly applied. An approach for removing
bulges from de Bruijn graphs was outlined15 in 2004 and, with some variations, is used in most existing short-read assemblers (e.g.,
EULER-SR16, Velvet17, ALLpATHS18, ABySS19 and SOApdenovo20). These and other recently developed tools introduced many new
algorithmic and software engineering ideas in assembly algorithms and paved the way toward assembling large (e.g., mammalian)
genomes with next-generation sequencing data (see refs. 21,22 for a detailed comparison of these and other assemblers).

Handling DNA repeats. Imagine sequencing 3-base reads from the cyclic genome, ATGCATGC. This should yield the four 3-mers: ATG,
TGC, GCA and CAT. The present definition of de Bruijn graphs, however, would lead us to reconstruct the genome as ATGC. The problem
is that each of the 3-mers actually occurs twice in the original genome. Therefore, we will need to adjust genome reconstruction so that
we not only find all k-mers occurring in the genome, but we also find how many times each such k-mer appears, which is called its ‘k-mer
multiplicity’. The good news is that we can still handle fragment assembly in the case when k-mer multiplicities are known. We simply
use the same method to construct the de Bruijn graph, except that if the multiplicity of a k-mer is m, we will connect its prefix to its
suffix using m directed edges (instead of just one). Extending the example in Figure 3, if we discover during read generation that each
of the four 3-mers TGC, GCG, CGT and GTG has multiplicity of two, and that each of the six 3-mers ATG, TGG, GGC, GCA, CAA and AAT
has multiplicity of one, we create the graph shown in Supplementary Figure 2. Furthermore, the graph resulting from adding multiplicity
edges is balanced (and therefore contains an Eulerian cycle), as both the indegree and outdegree of a node (representing a (k–1)-mer)
equals the number of times this (k–1)-mer appears in the genome.

In practice, information about the multiplicities of k-mers in the genome may be difficult to obtain with existing sequencing
technologies. However, computer scientists have found ways to reconstruct the genome, even when these data are unavailable. One such
technique involves ‘paired reads’. Reads are typically generated in pairs by sequencing both ends of a long fragment of DNA whose length
can be estimated well. If one read maps at or before the entrance to a repeat in the graph, and the other maps at or after the exit, the
read pair may be used to determine the correct traversal through the graph.

Handling multiple and linear chromosomes. We have discussed examples in which the genome consists of one circular chromosome. If
instead the chromosome is linear, then we will need to search for an Eulerian path, instead of an Eulerian cycle; an Eulerian path is not
required to end at the node where it begins. If there are multiple linear chromosomes, then we will have one path for each chromosome.
Euler’s work can be adapted to handle these complexities.

Handling unsequenced regions. Regions that are not sequenced and sequencing errors may further break the chromosomes into contigs (a
sequenced contiguous region of DNA) and gaps (unsequenced regions), with one path for each contig. Increasing the value of k will tend
to reduce the number of bulges and give longer contigs in places with high coverage but some errors. Even so, it will also tend to break
contigs in regions that have low coverage. Successive contigs along a chromosome may have overlaps of fewer than k nucleotides, or they
may have gaps between them. The correct order and orientation of the contigs, and the approximate sizes of the gaps, is determined in the
scaffolding phase of assembly. This phase uses additional information, including paired reads, to determine the order of contigs.

pR ImER
©

 2
01

1
N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

nature biotechnology volume 29 number 11 november 2011 991

to mask repeats that are longer than the read
length. However, if a future sequencing tech-
nology produces high-quality reads with tens
of thousands of bases, a smaller number of
reads would be needed, and the pendulum
could swing back toward favoring overlap-
based approaches for assembly.

Note: Supplementary information is available on the
Nature Biotechnology website.

ACKNOWLEDGMENTS
This work was supported by grants from Howard
Hughes Medical Institute (HHMI grant 52005726),
the US National Institutes of Health (NIH grant
3P41RR024851-02S1) and the National Science
Foundation (NSF grant DMS-0718810). We are
grateful to S. Wasserman for many helpful comments.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

1. Euler, L. Commentarii Academiae Scientiarum
Petropolitanae 8, 128–140 (1741).

2. Skiena, S. The Algorithm Design Manual (Springer,
Berlin, 2008).

3. Lander, E. et al. Nature 409, 860–921 (2001).
4. Venter, J.C. et al. Science 291, 1304–1351 (2001).
5. Kececioglu, J. & myers, E. Algorithmica 13, 7–51

(1995).
6. Adams, m. et al. Science 287, 2185–2195 (2000).
7. Fleischmann, R. et al. Science 269, 496–512 (1995).
8. Schatz, m., Delcher, A. & Salzberg, S. Genome Res.

20, 1165–1173 (2010).
9. Bandeira, N., pham, V., pevzner, p., Arnott, D. & Lill, J.

Nat. Biotechnol. 26, 1336–1338 (2008).
10. pham, S. & pevzner, p.A. Bioinformatics 26, 2509–

2516 (2010).
11. Grabherr, m. et al. Nat. Biotechnol. 29, 644–652

(2011).
12. de Bruijn, N. Proc. Nederl. Akad. Wetensch. 49, 758–

764 (1946).
13. Idury, R. & Waterman, m. J. Comput. Biol. 2, 291–306

(1995).
14. pevzner, p.A., Tang, H. & Waterman, m. Proc. Natl.

Acad. Sci. USA 98, 9748–9753 (2001).
15. pevzner, p.A., Tang, H. & Tesler, G. Genome Res. 14,

1786–1796 (2004).
16. Chaisson, m. & pevzner, p.A. Genome Res. 18, 324–

330 (2008).
17. Zerbino, D. & Birney, E. Genome Res. 18, 821–829

(2008).
18. Butler, J. et al. Genome Res. 18, 810–820 (2008).
19. Simpson, J. et al. Genome Res. 19, 1117–1123

(2009).
20. Li, R. et al. Genome Res. 20, 265–272 (2010).
21. paszkiewicz, K. & Studholme, D. Brief. Bioinform. 11,

457–472 (2010).
22. miller, J., Koren, S. & Sutton, G. Genomics 95, 315–

327 (2010).
23. Drmanac, R., Labat, I., Brukner, I. & Crkvenjakov, R.

Genomics 4, 114–128 (1989).
24. Southern, E. United Kingdom patent application

gb8810400 (1988).
25. Lysov, Y. et al. Doklady Academy Nauk USSR 303,

1508–1511 (1988).
26. pevzner, p.A. J. Biomol. Struct. Dyn. 7, 63–73 (1989).

require much work to formally validate.
Yet for every apparent complication to
sequence assembly, it has proven fruit-
ful to apply some cousin of de Bruijn
graphs to transform a question involving
Hamiltonian cycles into a different ques-
tion regarding Eulerian cycles (Box 2,
Supplementary Figs. 1 and 2). Moreover,
analogs of de Bruijn graphs have been use-
ful in many other bioinformatics problems,
including antibody sequencing9, synteny
block reconstruction10 and RNA assembly11.
In each of these applications, the de Bruijn
graph represents the experimental data in a
manner that leads to a tractable computa-
tional problem.

As new sequencing technologies emerge,
the best computational strategies for assem-
bling genomes from reads may change. The
factors that influence the choice of algo-
rithms include the quantity of data (mea-
sured by read length and coverage); quality
of data (including error rates); and genome
structure (e.g., GC content and the number
and size of repeated regions). Short-read
sequencing technologies produce very large
numbers of reads, which currently favor the
use of de Bruijn graphs. De Bruijn graphs
are also well suited to representing genomes
with repeats, whereas overlap methods need

into a single cycle. If this larger, combined cycle
contains all of the edges in the graph, then the
two ants have together found an Eulerian cycle!
If not, Euler’s method keeps recruiting addi-
tional ants until all of the graph’s edges have
been explored, at which point the ants’ cycles
can be combined to form an Eulerian cycle.

On modern computers, this algorithm can
efficiently find Eulerian cycles in huge bal-
anced graphs having billions of nodes, thus
avoiding the quagmire of NP-Completeness.
Therefore, simply recasting our original
problem into a slightly different framework
converts genome assembly into a tractable
computational problem.

The time required to run a computer imple-
mentation of Euler’s algorithm is roughly
proportional to the number of edges in the de
Bruijn graph. In the Hamiltonian approach, the
time is potentially a lot larger, because of the
large number of pairwise alignments needed to
construct the graph and the NP-Completeness
of finding a Hamiltonian cycle. A more detailed
comparison of these approaches is given in
reference 8.

Practical matters
De Bruijn graphs are not a cure-all.
Throughout our exposition, we have made
several simplifying assumptions, which

Box 3 Sequencing by hybridization

Few people remember that the idea of DNA sequencing using short reads dates back
to the late 1980s. In fact, the very first short-read sequencing approach, sequencing
by hybridization23–25, aimed to achieve genome assembly in this fashion. Sequencing
by hybridization, proposed in 1988, is based on building a microarray containing every
possible oligonucleotide of length k. After hybridization of such an array with an unknown
genome, one would get information about all k-mers present in the genome. De Bruijn
graphs were first brought to bioinformatics in 1989 as a method to assemble k-mers
generated by sequencing by hybridization26; this method is very similar to the key
algorithmic step of today’s short-read assemblers.

DNA arrays ultimately failed to realize the dream (DNA sequencing) that motivated
their inventors because the fidelity of DNA hybridization with the array turned out to be
too low and the value of k was too small. Yet the failure of DNA arrays was short-lived.
Although their original goal (DNA sequencing) was still out of reach, two new unexpected
applications emerged: measuring gene expression and analyzing genetic variations. Today,
these applications have become so ubiquitous that most people have forgotten that the
original goal of the inventors of DNA arrays was to sequence the human genome!

pR ImER
©

 2
01

1
N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

