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Abstract
We describe the maximum-likelihood parameter estimation problem and howppleet&ation-
Maximization (EM) algorithm can be used for its solution. We first describeatistract
form of the EM algorithm as it is often given in the literature. We then dgvéhe EM pa-
rameter estimation procedure for two applications: 1) finding the parametemigfure of
Gaussian densities, and 2) finding the parameters of a hidden Markov model (KHMM)
the Baum-Welch algorithm) for both discrete and Gaussian mixture observatdels.
We derive the update equations in fairly explicit detail but we do not prove anyecon
gence properties. We try to emphasize intuition rather than mathemadical r






1 Maximum-likelihood

Recall the definition of the maximum-likelihood estimatiamiplem. We have a density function
p(x|0@) that is governed by the set of paramei@rée.g.,p might be a set of Gaussians a@dould

be the means and covariances). We also have a data set d¥ sgpposedly drawn from this
distribution, i.e. X = {x1,...,xn}. Thatis, we assume that these data vectors are independent and
identically distributed (i.i.d.) with distributiop. Therefore, the resulting density for the samples is

N
p(X|0) = [[ p(x:|©) = L(©]X).
i=1

This function£(©|X) is called the likelihood of the parameters given the datfusirthe likelihood
function. The likelihood is thought of as a function of thegraeter® where the data’ is fixed.
In the maximum likelihood problem, our goal is to find tBethat maximizesC. That is, we wish
to find ©* where
©* = argmaxL(0|X).
©

Often we maximizéog(L(©|X)) instead because it is analytically easier.

Depending on the form gf(x|®) this problem can be easy or hard. For example(i|0O)
is simply a single Gaussian distribution whe®e = (u,o?), then we can set the derivative of
log(£(©]X)) to zero, and solve directly fqr anda? (this, in fact, results in the standard formulas
for the mean and variance of a data set). For many problemsyeoyites not possible to find such
analytical expressions, and we must resort to more elaborateidecs.

2 Basic EM

The EM algorithm is one such elaborate technique. The EM élgo{ALR77, RW84, GJ95, JJ94,
Bis95, Wu83] is a general method of finding the maximum-liketid estimate of the parameters of
an underlying distribution from a given data set when the daitacomplete or has missing values.

There are two main applications of the EM algorithm. The figtuss when the data indeed
has missing values, due to problems with or limitations of thgeolation process. The second
occurs when optimizing the likelihood function is analglig intractable but when the likelihood
function can be simplified by assuming the existence of and vditwesdditional butmissing (or
hidden) parameters. The latter application is more common in thepeational pattern recognition
community.

As before, we assume that datais observed and is generated by some distribution. We call
X theincomplete data. We assume that a complete data set exdsts (X', Y) and also assume (or
specify) a joint density function:

p(z|®©) = p(x,y|©) = p(y|x, ©)p(x|O)

Where does this joint density come from? Often it “arises” frtw@ targinal density function
p(x|©) and the assumption of hidden variables and parameter valssegiée.g., our two exam-
ples, Mixture-densities and Baum-Welch). In other cases, (®igsing data values in samples of a
distribution), we must assume a joint relationship between tissing and observed values.



With this new density function, we can define a new likelihomaldtion,£(0|2) = L(B|X,Y) =
p(X,Y|0), called the complete-data likelihood. Note that this fioreis in fact a random variable
since the missing informatiof is unknown, random, and presumably governed by an underlying
distribution. That is, we can think af(©|X,Y) = hx e()) for some functiorhy o(-) whereX
ando are constant and! is a random variable. The original likelihod{©|X) is referred to as the
incomplete-data likelihood function.

The EM algorithm first finds the expected value of the comptist: log-likelihoodog p( X, V|9)
with respect to the unknown dajagiven the observed dafd and the current parameter estimates.
That is, we define:

Q(0,007Y) = E [logp(X,¥|0)|X, 0] (1)

Where®(—1) are the current parameters estimates that we used to evdieatggectation ané
are the new parameters that we optimize to incréase

This expression probably requires some explanatibnThe key thing to understand is that
X and ©(-1) are constants® is a normal variable that we wish to adjust, a¥ids a random
variable governed by the distributigify| X, ©¢~1). The right side of Equation 1 can therefore be
re-written as:

E [logp(X,y|®)|X,®(i_1)} :/

log p(X,y|©)f(y|X, 00 1)dy. )
yeY

Note thatf(y|X, ©¢ 1) is the marginal distribution of the unobserved data and is riggret on
both the observed dafé and on the current parameters, ads the space of valugscan take on.

In the best of cases, this marginal distribution is a simple aicalygxpression of the assumed pa-
rameter®(i-1) and perhaps the data. In the worst of cases, this density migkrpéard to obtain.
Sometimes, in fact, the density actually used g, X' |0¢ D) = f(y|x,0¢ D) f(x (1) but
this doesn't effect subsequent steps since the extra fafato’|©¢ 1)) is not dependent 06.

As an analogy, suppose we have a functign -) of two variables. Considet(0,Y) where
6 is a constant and is a random variable governed by some distributfgr(y). Theng(8) =
Ev[h(0,Y)] = [, h(0,y)fr(y)dy is now a deterministic function that could be maximized if
desired.

The evaluation of this expectation is called the E-step oftberithm. Notice the meaning of
the two arguments in the functiag@(©, ©’). The first argumen® corresponds to the parameters
that ultimately will be optimized in an attempt to maximizestlikelihood. The second argument
©' corresponds to the parameters that we use to evaluate theaiqec

The second step (the M-step) of the EM algorithm is to maximigesttpectation we computed
in the first step. That is, we find:

0@ = argmaxQ(©,0(-1),
©

These two steps are repeated as necessary. Each iterationastgedrto increase the log-
likelihood and the algorithm is guaranteed to converge tmcallmaximum of the likelihood func-
tion. There are many rate-of-convergence papers (e.gRJAL. RW84, Wu83, JX96, XJ96]) but
we will not discuss them here.

'Recall thatE[A(Y)|X = z] = fy h(y) fr|x (y|z)dy. In the following discussion, we drop the subscripts from
different density functions since argument usage should should disambiguate different one



A modified form of the M-step is to, instead of maximizigy©, ©¢—1), we find somed®
such thaQ(@®, 0 1)) > Q(e,0( 1), This form of the algorithm is called Generalized EM
(GEM) and is also guaranteed to converge.

As presented above, it’'s not clear how exactly to “code up”dlgorithm. This is the way,
however, that the algorithm is presented in its most general.fdhe details of the steps required
to compute the given quantities are very dependent on theplar application so they are not
discussed when the algorithm is presented in this abstract form.

3 Finding Maximum Likelihood Mixture Densities Parameters via EM

The mixture-density parameter estimation problem is prgbabé of the most widely used appli-
cations of the EM algorithm in the computational patterrogggtion community. In this case, we
assume the following probabilistic model:

p(x|©) Zazpz (x6;)

where the parameters a@e= (o, ...,anm,01,...,0x) such thatzf‘il a; = 1 and eaclp; is a
density function parameterized By. In other words, we assume we hallecomponent densities
mixed together withl/ mixing coefficientsy;.

The incomplete-data log-likelihood expression for this digrfsbm the dataX’ is given by:

log(L(®|%)) = log [ [ p(xi]©) = Z log <z_: aj?j(éﬂil%))

i=1

which is difficult to optimize because it contains the log @ fum. Ifwe considet as incomplete,
however, and posit the existence of unobserved data ipéras {yz *, whose values inform us
which component density “generated” each data item, thdalhxked expression is significantly
simplified. That is, we assume thgt € 1,..., M for eachi, andy; = k if the i** sample was
generated by thet® mixture component. If we know the valuesYf the likelihood becomes:

N
log(L(0]X,Y)) = log(P(X,)]0)) Zlog (zily:) P(y)) = D _ log (y,py, (2il6y,))
i=1
which, given a particular form of the component densities, lbaroptimized using a variety of
techniques.

The problem, of course, is that we do not know the value¥.off we assumeéy is a random
vector, however, we can proceed.

We first must derive an expression for the distribution of the unvesiedata. Let's first guess
at parameters for the mixture density, i.e., we guess@at (af,...,a%,,07,...,609,) are the
appropriate parameters for the likeliho6@99| X, ). Given®9, we can easily compu@-(wi|9§)
for eachs andj. In addition, the mixing parameters,; can be though of as prior probabilities
of each mixture component, thatdg = p(component). Therefore, using Bayes’s rule, we can
compute:

p(yi|$i,®g) _ O‘Zipyi ($l|951) _ ﬁ,ﬁyz(wzwg,)
p@il09) Y afp(wil6])
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and
N

p(y|X,0%) = [ ] p(yilz:, ©9)
i=1
wherey = (y1,...,yn) iS an instance of the unobserved data independently drawn.n\Wke
now look at Equation 2, we see that in this case we have obtdieedesired marginal density by
assuming the existence of the hidden variables and making a guteesinitial parameters of their
distribution.
In this case, Equation 1 takes the form:

Q(0,07) = > log(L(B]X,y))p(y|X,09)

yeTl
N N
= Z log (ayipyi (‘T'Lwyz)) H p(yj|£lfj, ©9)
yeY i=1 j=1
M M M N N
= Z Z Z 2108 (ay;py, (z:]0y,)) H (yjla;, ©F
y1=1y2=1 yn=1:=1 Jj=1
M M M N M N
= YD YYD by, log (aupe(wil6e)) [ pysles, ©9)
= = =1

I
—

y1=1ly2=1 yn=1i=1 J

M

N
= D> log (cpe(ilfr))

{=1i=1

y] |CCJ, g) (3)

||'::]2

HM§

In this form,Q(©, ©7) looks fairly daunting, yet it can be greatly simplified. We finstte that
foreel,...,M,

M

M M N
Yod Y by [ p(ysles, 09
Jj=1

y1=1y2=1 yn=1

M M M M N
= ( Z Z 2_: H py]|w]’ )p(ﬂxi,@g)

Y1=

—
<
S
._.
H
<
<
+
=
Il
—
<

N M
= ]I (Z p(yj|$ja®g)> p(t|z;, ©9) = p(£|zi, ©9) (4)

j=Lij#i \y;=1

sinceX"M, p(i|z;,©9) = 1. Using Equation 4, we can write Equation 3 as:

Q(0,0%) = Zzlog (aupe(wil0e)) p(€]zi, ©F)

{=1i=1
= ZZlog ag)p(£|zi, © +2210gp£ xi|0¢))p(¢|:, ©7) ()
{=11i=1 {=11i=1

To maximize this expression, we can maximize the term comtgiw} and the term containing
6, independently since they are not related.



To find the expression fat,, we introduce the Lagrange multipliarwith the constraint that
> ¢ ¢ = 1, and solve the following equation:

Bag ZZlog ay)p(l|x;, ©9) +)\(Za4—1>] 0

or

N1
Z —p(l|z;, ©)+ A =0
i=1 Qy

Summing both sizes ovér we get thath = — N resulting in:

LN
ag = > oz, ©
izl

For some distributions, it is possible to get an analytical exppassord, as functions of everything
else. For example, if we assurialimensional Gaussian component distributions with meand
covariance matrix, i.e.,0 = (i, X) then

1 —La— “Lp_
pl(x“'l’g) 24) = We 2( HZ)TEZ ( P‘l)‘ (6)

To derive the update equations for this distribution, we nierkcall some results from matrix
algebra.

The trace of a square matriX #) is equal to the sum ofl’s diagonal elements. The trace of a
scalar equals that scalar. AlsoAr+ B) = tr(A) +tr(B), and t{AB) = tr(BA) which implies
thaty>, 7 Az; = tr(AB) whereB = Y, z;z. Also note thatA| indicates the determinant of a
matrix, and thatA 1| = 1/|A].

We'll need to take derivatives of a function of a matiikA) with respect to elements of that
matrix. Therefore, we defin% to be the matrix withi, 2 entry [%%fj)] wherea; ; is the

i, 7" entry of A. The definition also applies taking derivatives with respecatvector. First,

% = (A + AT)z. Second, it can be shown that whdris a symmetric matrix:

olA] _ | Ay ifi=3
da;j | 2Ai; ifi#j

whereA,; ; is thei, j** cofactor ofA. Given the above, we see that:

Olog|A| _ | Aij/1Al ifi=4 | _ ., - -1
9A _{2A4,j/|A| it 2y (24 —diadAT)

by the definition of the inverse of a matrix. Finally, it can bewh that:

Otr(AB)
0A

= B + BT — Diag(B).



Taking the log of Equation 6, ignoring any constant terms ¢sithey disappear after taking
derivatives), and substituting into the right side of Equatipw® get:

M N
33" log (pe(wil e, Se)) p(£]s, ©9)
{=11i=1
M N
= ) (—%log(md)—%(%—M)Tﬁgl(mi—wo p(f]zi,©9) 7)
=1 i-1

Taking the derivative of Equation 7 with respeciipand setting it equal to zero, we get:

Zzz — ke)p(t]zi, ©9) =0

with which we can easily solve fqr, to obtain:

Zilil wip(awi, @g)
Zililp(amia@g) .

To find X4, note that we can write Equation 7 as:

e =

N 1 N
2[ log(|%, ') Y- p(elei, ©9) — 5 Y p(tles, ©)tr (2, (wi — o) (i — o))
=1 =1 i=1
M N 1 N
= > [ log(1Z;') Y p(£)zi, ©9) — gZp(ﬂlxi,Gg)tr (Elel,i>]
=1 =1 i=1

whereN,; = (z; — pe)(z; — o).
Taking the derivative with respect &, !, we get:

1 X . 1 ¥ .
2 > p(tz;, ©9) (25, — diagZ,)) — 2 > p(t)zi, ©9) (2N,; — diag(Nyy;))
=1 i=1
LN
= 5 Z £|.'I?Z, @g 2Mg7i — diaQXMgﬂ'))
i=1
= 2§ —diagS)

whereM,; = Xy — N, ; and whereS = 3 Z —1 p(£|z;, ©9) M, ;. Setting the derivative to zero, i.e.,
25 —diag(S) = 0, implies thatS = 0. This gives

N
Zp(ﬂwi, @g) (Eg — Ngﬂ') =0
=1

or
_ Sy p(tli, ©9)Neys _ ity p(Elei, ©9) (ws — pe) (i — pe)”

Sivy p(l|zs, ©9) S, p(l|zi, ©9)




Summarizing, the estimates of the new parameters in ternhe @id parameters are as follows:
1
o = 1 Y p(ll:, ©)
=1

new __ Zz]il 'rlp(axl’ @g)
a N, p(tlz:, ©9)
1 p(lxi, ©9) (2 — ppe) (zi — pge)”
YLy p(llzi, ©9)
Note that the above equations perform both the expectatematd the maximization step

simultaneously. The algorithm proceeds by using the newlyeémarameters as the guess for the
next iteration.

Z?E’LU —

4 Learning the parameters of an HMM, EM, and the Baum-Welch
algorithm

A Hidden Markov Model is a probabilistic model of the joint pability of a collection of random
variables{Oy,...,0r,Q1,...,Qr}. TheO; variables are either continuous or discrete observa-
tions and the; variables are “hidden” and discrete. Under an HMM, there wa@ ¢onditional
independence assumptions made about these random variadtieaake associated algorithms
tractable. These independence assumptions are 1}ttiédden variable, given thé — 1)
hidden variable, is independent of previous variables, or:

P(Qt|Q¢-1,0¢-1,-..,Q1,01) = P(Q¢|Q¢-1),

and 2), thet® observation, given th&” hidden variable, is independent of other variables, or:

P(O4|Q1,01,Q1-1,07-1, ..+, Qt 41,041, Qt, Qt—1,0¢—1,...,Q1,01) = P(O¢|Qy).

In this section, we derive the EM algorithm for finding the nmaxim-likelihood estimate of the
parameters of a hidden Markov model given a set of observearéeatctors. This algorithm is also
known as the Baum-Welch algorithm.

Q: is a discrete random variable witN possible value§1... N}. We further assume that
the underlying “hidden” Markov chain defined B(Q:|Q:—1) is time-homogeneous (i.e., is inde-
pendent of the time). Therefore, we can represeR{Q;|Q:—1) as a time-independent stochastic
transition matrixA = {a; ;} = p(Q: = j|Q:—1 = ¢). The special case of time= 1 is described
by the initial state distributiony; = p(Q1 = 7). We say that we are in stajeat timet if Q; = j. A

particular sequence of states is described by (qi,. .., qr) whereg; € {1... N} is the state at
timet.
A particular observation sequenckis described a® = (O; = o1,...,0r = or). The

probability of a particular observation vector at a particuime ¢ for statej is described by:
bj(o) = p(Or = 0:|Q: = j). The complete collection of parameters for all observatiistriel
butions is represented By = {b;(-)}.

There are two forms of output distributions we will consideneTirst is a discrete observation
assumption where we assume that an observation is ofepotsible observation symbalg €
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V = {v1,...,v}. Inthis case, ibo; = v, thend;(o;) = p(O: = vi|g: = j). The second form
of probably distribution we consider is a mixture &f multivariate Gaussians for each state where
bj(0r) = 3021 cjeN (oelmje, Bje) = Y121 cjebje(0r)-

We describe the complete set of HMM parameters for a given nmindel = (A, B, 7). There
are three basic problems associated with HMMs:

1. Findp(O|\) for someO = (ol,...,or). We use the forward (or the backward) procedure
for this since it is much more efficient than direct evaluation

2. Given som&) and some), find the best state sequenge= (q1,...,qr) that explainsO.
The Viterbi algorithm solves this problem but we won't discusa this paper.

3. Find\* = argmaxp(O|\). The Baum-Welch (also called forward-backward or EM for
A
HMMs) algorithm solves this problem, and we will develop it geatly.

In subsequent sections, we will consider only the first and thirlpros. The second is addressed
in [RJ93].

4.1 Efficient Calculation of Desired Quantities

One of the advantages of HMMs is that relatively efficienbailiypms can be derived for the three
problems mentioned above. Before we derive the EM algoriivectly using the? function, we
review these efficient procedures.

Recall the forward procedure. We define

az(t) :p(ol =01,...,0t = 04, Q¢ = 7'|A)

which is the probability of seeing the partial sequeage . ., o, and ending up in stateat timet.
We can efficiently define;(¢) recursively as:

1. a;(1) = mbi(01)
2. aj(t+1) = [Zﬁil ai(t)aij} bj(ot+1)
3. p(OIA) = £ e(T)
The backward procedure is similar:
Bi(t) = p(O41 = 041, -..,07 = or|Qt = i, A)

which is the probability of the ending partial sequeege, . . ., or given that we started at state
at timet. We can efficiently defing;(¢) as:

1. Gi(T) =1
2. Bit) = 1 aijbj(0i+1)B;(t + 1)

3. p(O|A) = =X, Bi(1)mibi(o1)



We now define
7i(t) = p(Qr = i[O, A)
which is the probability of being in staieat timet for the state sequene2. Note that:
p(0,Q=il\) _  p(0,Q: =i\
P(O|X) Y1p(0,Q: = j|A)

Also note that because of Markovian conditional independence
a;(t)Bi(t) = p(o1,...,0t, Q¢ = t|A)p(0t41,...,07|Qr = 3, A) = p(O, Q¢ = i|A)
so we can define things in terms®f(t) andg;(t) as

B
LS SPTEAD

p(Qt = Z|O’ )‘) =

We also define
&ji(t) =p(Qt =1, Qty1 = j|O, A)

which is the probability of being in staieat timet and being in statg at timet + 1. This can also
be expanded as:

13 ( ) (Qt =1, Q¢+1 = J, O|)‘) az(t)a”b (0t+1)/6j(t + 1)
Y p(O[A) 1 YN ai(t)aijbi(os41)8;(t + 1)
or as.
gii(t) = p(Q:¢ = i|0O)p(0t41-..07, Qi1 = §|Qt = i, A)  7i(t)aijbj(0s41)B;(t + 1)
ij

p(0t+1...07|Qe =14, A) - Bi(t)
If we sum these quantities across time, we can get some usefusvaleie the expression

T

> i(t)

t=1

is the expected number of times in sta@nd therefore is the expected number of transitions away
from statei for O. Similarly,

T-1
> &)
t=1

is the expected number of transitions from stdtie statej for O. These follow from the fact that

> _ilt) =Y EIL(i)] = E[Y_ L(i)]

and

D &) ——ZEIt (1, )] ZIt (i, 7)]
t

wherel(¢) is an indicator random variable thatlisvhen we are in stateat timet, and;(z, j) is
a random variable that iswhen we move from stateto statej after timet.

9



Jumping the gun a bit, our goal in forming an EM algorithm toraste new parameters for the
HMM by using the old parameters and the data. Intuitively, &e do this simply using relative
frequencies. l.e., we can define update rules as follows:

The quantity

is the expected relative frequency spent in siatetime 1.
The quantity
T-1
~ Zt 1 El]() (9)

ST )

is the expected number of transitions from staie state; relative to the expected total number of
transitions away from state
And, for discrete distributions, the quantity

7. _ 23121 60t,vk7i(t)
MO = Eor ¢

is the expected number of times the output observations hege bqual ta; while in state:
relative to the expected total number of times in siate

For Gaussian mixtures, we define the probability that#tecomponent of thet® mixture
generated observatien as

cigbig(o .
e (®) = 7)) ) _ @, — i, X = 0, )
bi(Ot)
whereX;; is a random variable indicating the mixture component a¢fifior states.
From the previous section on Gaussian Mixtures, we might guesththapdate equations for
this case are:

o Zt 17ie(t)
il =
Zt:l Yi (t)
i = qu 1Yie(t)or
' Zt 1Yie(t)
5 Zt 17t (t) (08 — pie) (0¢ — Nz’l)T
i =
Zt:l Yie(t)

When there aréZ observation sequences tié being of lengthT,, the update equations be-

come: .
Ze:l ’Yze(l)
E

1Zt 1%4()
IZt 1’)’@()

1Zt 1%[() of
IZt 17,z()

m =

Cite =

Hig =

10



1Zt 1716( )( ,u’lf)( ,uzé)
Ze 1Zt llyzf()

Y=
and E .
C1 2251 655(t)

IZt 1’)’1()

These relatively intuitive equations are in fact the EM ailifpon (or Balm-Welch) for HMM
parameter estimation. We derive these using the more typicai@ition in the next section.

a;; =

4.2 Estimation formula using the@ function.

We considerO = (oy,...,or) to be the observed data and the underlying state sequerce
(q1,---,qr) to be hidden or unobserved. The incomplete-data likelihaotttion is given by
P(OJ|X) whereas the complete-data likelihood functionA§0O, g|A). The @ function therefore
is:
QA N) =Y log P(0,g|\)P(0,q|X)
qeQ
where)’ are our initial (or guessed, previous, eteestimates of the parameters and wh@ris the
space of all state sequences of lerngth
Given a particular state sequengeepresenting?(0, ¢|)\') is quite easy. l.e.,

T
P(0,q|A) = 7y, H g, 1q:0q, (0t)
t=1

The@ function then becomes:

QAL N) = 3 log 7, P(0,q|N)+ Y (Zlogaqt lqt> p(0,alN)+ <Zlogbqt(0t)> P(0,q/X)

qeQ qeQ geQ \t+1
(11)

Since the parameters we wish to optimize are now indepernydspiit into the three terms in the
sum, we can optimize each term individually.
The first term in Equation 11 becomes

N
> log g, P(0,q|X) = log mip(O, qo = i|X)
g€l i=1

since by selecting alj € Q, we are simply repeatedly selecting the valuegyo®o the right hand
side is just the marginal expression for time- 0. Adding the Lagrange multipliey, using the
constraint thadp ", m; = 1, and setting the derivative equal to zero, we get:

5 (& N
o (Z log m;p(0, g0 = i|\') + 7(2 ™ — 1)) =0

i=1 i=1

2For the remainder of the discussion gmjmed parameters are assumed to be the initial, guessed, or previous param-
eters whereas the unprimed parameters are being optimized.

¥Note here that we assume the initial distribution staris &t 0 instead oft = 1 for notational convenience. The
basic results are the same however.
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Taking the derivative, summing oveto get~, and solving forr;, we get:

_ P(0,q0 =i|X)
" PO
The second term in Equation 11 becomes:
T N N T
Z (Zlogaqt_lqt> (0,q|\) ZZZloga” (0,q:-1=1i,q: = j|\)
qe@ \t=1 i=1j=1t=1

because for this term, we are, for each titleoking over all transitions fromto 5 and weighting
that by the corresponding probability — the right hand sidass §um of the joint-marginal for time
t — 1 andt. In a similar way, we can use a Lagrange multiplier with the (mhsltzj-v:l a;; =110
get:
aij = SLLPO,q1=1i,q = j|\)
Sty P(O,q1 =i|X)
The third term in Equation 11 becomes:

T N T
3y <Zlogbqt(ot)> (0,qIN) =D "logbi(0)p(0, g = i|N')
t=1

q€eQ i=1t=1

because for this term, we are, for each titneoking at the emissions for all states and weighting
each possible emission by the corresponding probability — tin m@nd side is just the sum of the
marginal for timet.

For discrete distributions, we can, again, use use a Lagrangelmeunlbut this time with the
constraintzfz1 b;(j) = 1. Only the observations that are equabfocontribute to thek** proba-
bility value, so we get:

Z’tT:l P(Oa qt = i|)‘,)60t,vk
Zthl P(O,q: =i|X)

For Gaussian Mixtures, the form of tlig function is slightly different, i.e., the hidden vari-
ables must include not only the hidden state sequence, but al@dable indicating the mixture
component for each state at each time. Therefore, we canduiate

QN N) =Y > log P(O,q,m|A)P(O,q,m|X)
geQ meM

bi(k) =

wherem is the vectomm = {mg,1, mg,2, - . ., Mg} that indicates the mixture component for each
state at each time. If we expand this as in Equation 11, the ficssacond terms are unchanged
because the parameters are independent ofhich is thus marginalized away by the sum. The
third term in Equation 11 becomes:

T N M T
Z Z <Z logbqt (Otamqtt)> P(O’qamp‘,) = Zzzlog szbzl Ot (ant = iamtht = £|)")
qeEQmeEM \t=1 i=1¢=1t=1

This equation is almost identical to Equation 5, except fomaddition sum component over the
hidden state variables. We can optimize this in an exactlyogioals way as we did in Section 3,
and we get:

Z{:I P(Qt = Z'aantt = £|07 )‘I)
Z?:l fo\il P(gt = i, mg: = £|O, X)’

Cil =
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and

_ 23;1 OtP(qt = ia Mgt = €|O, A,)
Yio1 P(g: = i,mg = €0, X)

K4l

)

_ (00— pie) (0 — pie)"Plgs = i, mge = £|O, N

i T ; ;
Zt:l P(Qt =1, Mgt = £|Ov A )

As can be seen, these are the same set of update equations as gfieprevious section.
The update equations for HMMs with multiple observation seges can similarly be derived
and are addressed in [RJ93].
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