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Protein sequence  alignments  have become an important tool for molecular biologists. Local 
alignments  are frequently constructed with the aid of a “substitution score matrix”  that 
specifies a  score for aligning each  pair of amino acid residues. Over the  years,  many different 
substitution  matrices have been proposed, based  on a wide variety of rationales.  Statistical 
results,  however, demonstrate  that  any such  matrix is i.mplicitly a “log-odds”  matrix, with 
a specific target  distribution for aligned pairs of amino acid residues. In  the light of 
information  theory,  it is possible to express the scores of a substitution  matrix in bits  and to  
see that different matrices are  better  adapted  to  different purposes. The most widely used 
matrix for protein sequence  comparison has been the PAM-250 matrix. It is argued that for 
database searches the PAM-,I20 matrix generally is more appropriate, while for comparing 
two specific proteins with.suspecte4 homology the PAM-200 matrix  is  indicated.  Examples 
discussed include the lipocalins, human  a,B-glycoprotein,  the  cystic fibrosis transmembrane 
conductance regulator and  the globins. 
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pattern recognition 

2. Introduction . 

General  methods for protein sequence  comparison 
were introduced  to  molecular biology 20 years ago 
and have  since  gained widespread  use.  Most early 
attempts  to measure protein sequence  similarity 
‘‘$’vused on global sequence  alignments, in which 
1.vclry residue of the two  sequences  compared had to 
participate  (Needleman & Wunsch, 19TO; Sellers, 
1954; Sankoff C Kruskal, 1983). However, hecause 
distantly  related proteins may share only isolated 
regions of similarity, e.g. in the  vicinity of an active 
site, attention has shifted to local as opposed to 
global sequence  similarity  measures.  The basic idea 
is to consider only relatively conserved sub- 
xquences;  dissimilar regions do  not  contribute  to or 
,thtract from the measure of similarity. Local  sirni- 

iurity mar be  studied in a  variety of ways. These 
include measures  based on the longest matching 
segments of two  sequences with a specified number 
or proportion of mismatches (Arratia’et al., 1986; 
Xrratia & Waterman, 1989), as well as methods  that 
compare all segments of a fixed, predefined 
“window”  length  (McLachlan, 1971). The most 
common practice,  however, is to consider segments 
1 ; f ’  all lengths,  and choose those that optimize 

similarity  measure (Smith & Waterman, 1981; Goad 
& Kanehisa, 1982; Sellers, 1984). This has the 
advantage of placing no a priori restrictions on the 
length of the local alignments  sought. Most data- 
base search methods  have been  based on such local 
alignments  (Lipman & Pearson, 1985; Pearson & 
Lipman, 1988; Altschul et aE., 1990). 
To evaluate local alignments, scores generally  are 

assigned to each aligned pair of residues (the  set of 
such scores is called a substitution  matrix),  as well as 
to residues aligned with nulls: the score of the 
overall alignment is then taken to be the sum of 
these scores. Specifying an  appropriate  amino acid 
substitution  matrix is central to protein comparison 
methods  and much effort has been devoted to 
defining, analyzing  and refining such matrices 
(SIcl,achlan, 1971; Dayhoff et al., 1978; Schwartz & 
lhyhoff, 1975; Feng et al., 1985; Rao, 1987: Risler et 
al.. 1988).  One hope has been to find a matrix best 
adapted  to  distinguishing  distant  evolutionary 
relationships from chance  similarities.  Recent 
mathematical  results  (Karlin & Altschul, 1990; 
Karlin et al., 1990) allow all substitution matrices to 
be  \%wed  in a common light,  and provide a 
rationale for selecting particular sets of “optimal” 
scores for local protein sequence  comparison. 



2. The Statistical  Significance of Local 
Sequence  Alignments 

C;lohal alignments  are of essentially no I I S ~  unless 
they can aIlow gaps. but this is not  true for local 
alignments. The ability to choose segments w i t h  
arbiora.r?- starting positions in each  sequence  means 
that biologically significant regions frequently may 
be aligned without the need to introduce gaps. 
Ij'hile: i n  general. it. is  desirable t o  allow gaps in 
low1 dignments.  doins so greatly  decreases  their 
mathematical tractabilit?. The  results described 
here applv rigorously only t.0 1oc:al alignmen1.s that. 
lack g a p .  i.e. to segments 01' ecpa.1 I~ngth from each 
of the two sequcncrs cmmpsretl. Somc r c w n t  di~, t i~-  
base search tools have focusccl on tintling st~c:h align- 
ments (-4ltsc:hul & L i p m m ,  1990; Alt.sc:hnl r!f 0.1.. 
1990). Howrc-er. the statisLics Of optimal s(wrt's fi)r 
lot:al ;Aignments that include gaps (Smith e! a/., 
19S.5; li'aterman et d . ,  1957) are 1)roully ;~nalogous 
t o  those for thc no-gap case (Karlin Rr Altsc:huI: 
1990; Karlin el al., IYYO), where  more precise resull,s 
are availaMe. Therdore, one may hope that many of 
the h i c  ideas prcsenfsd t)elow w i l l  ge~~eraliw 1.0 
local alignments that include gaps. 

Formally, we assume t h a t  the aligned amino acids 
ai and ai are assigned the  substitution score sij. 
Given two protein sequences, the  pair of ( ~ 1 1 1 5 1  
length segments that, when aligned,  have  the 
greatest. aggregate score we call the Maximal 
Segment Pair (MSPt). An MSP may be' of any 
length; its score is the  MSP score. 

Since any two protein sequences, related or u n -  
related, a-ill have some MSP score, it is important to 
know how great a score one  can  expect to find 
simpIy by chance. To address this question  one 
needs some model of chance. The  simplest is to  
assume that in the two  proteins  compared,  the 
amino acid ai appears  randomly  with  the prob- 
ability pi .  These probabilities are chosen to reflect 
the observed frequencies of the amino  acids in 
actual proteins. For simplicity of discussion we  will 
assume both  proteins  share the same amino acid 
probability  distribution;  more  generally,  one  can 
allow them to have different distributions. A 
random protein sequence is. simply  one constructed 
according to  this model. 

For the  sake of the  statistical  theory, we need to 
makc two crucial but reasonable assumptions  about 
the substitution scores. The first is that  there be at 
least one positive score and  the second is that  the 
expected score xi, jpipjs , j  be negative. Because we 
permit the length of a segment  pair  to  be  adjusted 
to optimize i t s  score, both  these  assumptions  are 
necessary also from a practical perspective. If there 
were  no positive scores, the MSP would always 
consist of a single pair of' residues (or none at all,  if 
this were permitted), and such an alignment  is not 
of interest. If the  expected score for two  random 
residues were positive, extending a segment  pair as 

t Abbreviations used: MSP. Maximal Segmrnt h i r :  
Ig. immunoglobulin. 

Not.ic:c* t h i L t .  multiplying all the wares of a sul)st.itu- , 
t i o n  matris 1)y somr ~~osit  i v c  t:ollstiLl1t (Ioos not 
n f f 1 A c : t .  t l l c  r e 1 ; ~ t . i ~ ~  s(:ores of' any sl~i,;lli~,rn~nc~l~ts. Two 
mat r i w s  n?lat.c'tl 1)y s11(*h f'ncAtor (:Hn, lhrrrf(~re, be I 

c:onsidercd , c:ssc+ntialIy t ~ ( I u i v ; ~ h i .  Tnslwc*tion of ; 
cqna.tion ( 1  ) re\T(!;LIs tha t  multiplying d l  worm by (I ' 
;~lso has t h e  c?ffr:ct  of dividing 2. I)? 11. Tht. t);lrameter 1 
1. mil?., t.lrc?rc\fore, I)r viewed :I t ~ t 1 1 r : d  sc-;~l(. for 4 
a n y  sroring system; i ts  c1ery)er meaning w i \ :  be , d  
discassc~l h e l o w .  

C;ivw~ t w o  random protein stlquw1ws as tlcscribed .i 

above, how many distinct, 01' -'loc*ally optimal" 
(Sellers., * 1984) MSPs with score at least S are 
expect@ to occur simply by chance? This number is 
well apbroximated by the formula: 

c 

!$ 

K.1' c - As 
where N is the  product of the sequenws' len$hs, 
and h' is an  explicit]? calculable parameter ( l iar l in  
& Altschul, 1990; Karlin et nl.. 1990). When 
comparing a single random  sequence with  all the. . 
sequences in a database,  setting iV to the product of '  
the  query  sequence length and the  database length 
(in residues) yields an upper  bound on the number 
of distinct MSPs with  score a t  least S .that the 
search is especkd to yield. 

3. Optimal Substitution Matrices for Local 
Sequence  Alignment 

Formula (2) allows us to tell when a segm 
has a significantly high score. However, i t  doe 
assist in choosing an appropriate  suhsti 
matrix in the first place. A second class of r 
however, has direct bearing on this question. Th 
state that among MSPs from the comparison 
random sequences, the amino acids ai an 
aligned with  frequency  approaching qij = p 
(Arratia et or., 1988; Kartin 8: Altschul, 1990; 
et al., 1990; Dembo & Karlin, 1991). 

Given any snbstitution  matrix  and  rando 
tein model,  one may easily calculate  the 
target  frequencies, qij ,  just described. Sotice 
by t h e  definition of J. in equation ( I ) ,  these t 
frequencies sum to 1. Sow among  ztlig~ment 
senting  distant homologies, the amino acids 
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with  certain  characteristic frequencies, Only 
e  correspond to a matrix’s  target frequencies, 

Any substitution  matrix has  an implicit set of 
arget frequencies for aligned amino acids. Writing 
the  scores of the  matrix in terms of its  target 
frequencies, one has: 

,qij = (In % ) / A .  ( 3 )  
Pi Pj 

In other words, the score for an amino acid pair can 
be written a s  the  logarithm  to  some  base of that 
pair‘s target frequency  divided by the background 
frequency w i t h  which the  pair occurs. Such  a  ratio 
compares the  probability of an’ event owurring 
under  two alternative  hypotheses and is culled a 
likelihood or odds  ratio.  Scores that  are  the 
logarithm of odds  ratios  are called log-odds scores. 
Adding such scores can be thought of as multiplying 
the corresponding  probabilities, which is appro- 
priate for independent  events. so that  the  total score 
rtmains a log-odds score. 

Log-odds matrices have been advocated in a 
number of contexts, (Dayhoff et al., 197s;  Gribskov 
et ai., 1987; Qtormo & Hartzell, 1989). The widely 
used PAM matrices (Dayhoff *et  al., 1;978), for 
instance, are explicitly of this form.  Other  substitu- 
tion matrices. though based on a wide *variety of 
rationales. are all log-odds matrices, but with 
implicit rather Lhan explicit  target frequencies. 
T:-:-refore,  while one  may criticize the method 
drwiI.)c:tl hy I h ~ h d f  et al. for estimating  appro- 
priate target. frryuencies (Wilbur, 19S5), the most 
direct way to derive superior matrices appears  to 1)e 
through the refined estimation of amino acid pair 
target ant1 txwkground frequencies rather  than 
through any f~~nrlamttntally different approach. 

cf Substitution Matrices for Global Alignments 
l\,’hile we have heen wnsitlering  sut)stit~rtion 

matrices i r l  the conlest of local secluenw cwmpari- 
SOII. th ry  m t r ’  I w  t.rnployec1 for glotwl alignment as 
well (Xe(~!lIrlnun & Wunsch. I ! ) l i O ;  Sell~rs ,  1974; 
Schwartz 8 I h ~ h o R ,  l!I‘iX). There is a fundamental 
difference. twwever, hetween the use of such 
matrices in tlwse two contexts. For global align- 
ments. as previously. mult.iplying all scores by  a 
ti. 4 positive number  has no  effect on the relative 
st - w s  of rliff’rrtwt afignrnents. B u t  adding a fised 
(pantity tu t h e  score for aligning any pair of 
resit1ut.s ( a n d  @ to the wore for aligning a residue 
with a null) likewise has no effect. Scoring  systems 
that may hr transformed into  one a n o t h e r  by means 
of these two rules are,  for all practical purposes, 
equivalerrt. ~ n f o r t u n a t e l ~ ,  the new transformation 
m w 1 S  that no unique log-odds interpretation of 
glolx~l substitution matrices is possible, and it is 
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doubtful  that  any  “target  distribution” theorem 
can be proved. It may be possible to make a 
convincing case for a particular  substitution  matrix 
in the global alignment  context,  but  the  argument 
will most likely have to be different from that for 
local alignments  (Karlin & Altschul, 1990). The 
same  applies  to  substitution  matrices used with 
fixed-length windows  for studying local similarities 
(McI,achlan, 1971; Argos, 1987; Stormo & Hartzell, 
1989): a fixed quantity can be added to all entries of 
such a matrix with no essential effect. I t  is notable 
t h a t  while the PAM matrices were developed origin- 
ally for global sequence  comparison  (Dayhoff et al., 
19SS), their  statistical  ,theory  has blossomed  in the  
local alignment  context. 

5. Local Alignment Scores as Measures 
of Information 

Multiplying a substitution  matrix by a  constant 
changes A but does not  alter  the  matrix’s implicit 
target frequencies. By appropriate scaling, one may 
therefore select the  parameter A at will. Writing the 
matrix in log-odds form, such scaling corresponds 
merely to using a different implicit base for the 
logarithm.  One  natural choice for ,I is 1 ,  so that all 
scores become natural logarithms. Perhaps more 
appealing is to choose A = In 2 = 0.693, so that the 
base for the log-odds matrix becomes 2. This lends a 
particularly  intuitive appeal to formula (2). Setting 
the  expected  number of MSPs with score at least S 
equal to  p ,  and solving for S, one finds: 

K s = log, - +log2 x. 
P (4) 

For typical  substitution  matrices, K is  found to be 
near 0 - 1 ,  and a n  alignment may be considered 
significant when y is 005. Therefore the  right-hand 
side of equation (4) generally is dominated hy t h e  
term  logz N .  In other words, the score needed t o  
distinguish an MSP from chance is approximately 
the  number of bits needed  to specify where the aZSP 
st.arts i n  each of the  two sequences being compared. 
(One  bit can be thought of as the answer to a single 
yes-no  question; it is the  amount of information 
needed to distinguish between 2 possibilities. I t  
1)ecomes apparent that,  in general. logz 9 bits of 
information  are needed to distingrlish among S 
possibilities.) 

For comparing  two proteins of length 290 amino 
acid residues, about 16 bits of information are 
,required; for comparing one such protein to a 
sequence  database cont.sining 4,000,000 residues. 
about 30 bits  are needed. When cast in th i s  light, 
alignment scores are not  arbitrary numbers. By 
appropriate scaling (multiplying by i./0-693) they 
take  on  the  units of bits,  and  rough significance 
calculations  can be performed in one’s head. 
Furthermore, when so normatized. different amino 
acid substitution matrices may he directly 
compared. 
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6. The  Relative Entropy of a 
Substitution Matrix 

The  above review of previous resuks has provided 
us nit.h the necessary tools for  the  analysis tha.t. 
follows. The  ultimate goal is to  decide which substi- 
t.ution matrices are  the most appropriate for. data- 
base  searching  and for detailed pairwise sequence 
comparison. 

Given a  random protein model and a substitution 
matrix: one  may calculate  the  target frequencies qij 
characteristic of the  alignments for which the> 
matrix is optimized. A useful quantity  to consider is 
t h e  average score [information)  per residue pair in 
these a.lignments. .Assuming the substitution  matrix 
is normalized as described above, this value is 
simp]!: .. . - 

Qi j  cies for data.l)ase sea.rches. 
I -& rrj log2 -. 

-., t ,  J Pi Pj Assuming the model des(-ribed hy 1)ayhoff et a/, 
(1978), Table. 1 lists the relative entropy II implicit 

Xotice that H depends both  on the  substitution in a range of T'AY matrices. As argued  above, 
matrix and on the random  protein  model. Tn distinguishing an alignment  from chancer in  a search 
information theoretic terms, H is the relative of a t_vpical current protein database using an 
entropy of the  target  and  background  distributions. average length protein requires ahout 3 0  bits of ~ 

The origin  of the  name need not be of concern.  The information. Accordingly, fur an alignment of - 
important  point is that, for an alignment  character- segments separated by a given PAM distal] 
ized by the  target frequencies qi j ,  H measures the (:an  calcu1at.e the minimum length necessary to  rise 
average  information  available per position t o  above background noise; these lengths are recorded . ,: 

distinguish the  alignment from  chance.  Intuitively, in Table j .  For instance. at a distance of  250 PAMs, 

H, relatively cant, such an alignment wouid  need to  I 
short  aliGments  with  the  target  distribution can  be length greater than  about 83 residues. >Ian?- binlngi- 
distinguished from chance, while, if the  value of I1 is cally interesting regions of protein similarity ;',re 4 
lower, longer alignments  are necessary. much shorter t h a n  this, and  accordingly neeri a 

standpoint. From a study of mutations between  a ment position, while one of leng-11 50 residues nil] 
large number of closely related  proteins,  Dayhoff need about 0 7 5  bit.  Table I shows that  such  align-' 
and co-workers proposed a stochastic model  of pro- ments will not be detectable if their  constituent 

The relative entropy H of P A M  matrices .e 

PA 2u Min.  significant PAM Min. significant 
distance H (bits) length (30 bits) distance H (bits) length (30 bits) 

0 1.17 ' 8  180 060 51 -4 
10 343 9 190 055 55 
'10 295 11 200 0 5  1 

7 
30 255 12 210 048 

59 

40 2.26 14 220 
63 

50 
045 

2.00 
68 

15 230 
60 

042 
1.79 

73 
17 2 M  039 78 

. .$ 

90 1.30  24 270 032 
1 0 0  1.18  26 280 030 

94 

110 1-08 28 2m 0.28 107 
1 0 0  

1.20 098 31 300  025 
130 

113 
090 . 34 310 025 190 

140 082 35 , 320 024 125 
150 076 40 330 0-22 134 .c.* 

1 6 0  070 43 340 021 141 
150 065 ' 47 350 0-20 I49 

1 

. .1 
ai 

. .  
- :g 
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Table 2 
The average score (in  bits)  per alignment position when using given PAM'mtr ices  

to compare segments in  fact separated by  a  variety of P,4M distances 

PAX mat.rix  Actual PAM distance D of segments , 

-1.I employed 40 80 1 20 160 200 240 280 3'20 

40 
80 

120 
160 
200 
240 
280 
320 

226 1.31 0.62 0.10 -0.30 -061 -0.86 -1.06 
i.14 1.44 0.92 0.53 0.23 -0.02 -021 -037 
1.93 1.39 0.98 0.67 @e2 022 0.06 -0.07 
1.71 1.28 0.95 0.70- 0.50 033 0.20 0.09 
1.5 1 1.16 0.90 068 051 038 0.26 01s 

1.17 0.94 0.75 0.60 048 0.38 030 oP3 
1.03 0.84 068 0-56 046 0.37 030 024 

1.3'2 1.05 0.82 065 0.51 0.39 0.29 0.21. 

segments have diverged  by more then  about. i 5  and 
150 PA$ls. respectively. 

7. PAM Matrices for Database Searching  and 
Two-sequence  Comparison 

The  relative  entropy associated with a specific 
PAM distance  indicates how much information per 
:mition is optimally  available.  For u. giwtr align- 
ment.  one m n  attain such a score only  by using the 
appropriate.P.4.M matrix,  but, of course, before the 
alignment is found it will not be  known  which 
matrix that is. It has  therefore been'propowd that a 
variety of PAM matrices be  used for 'database 
searches (Collins et al., 1988). We seek here to 
analyze how many  such  matrices  are necessary, and 
which should he used. 

Suppose one uses a matrix optimized for PAM 
.iistance rM to compare two homologous protein 
segments t h a t  are  actually  separated by PAM 
distance D. For  a range of values of 1V and D, the 
average  score  achieved  per  alignment position is 
shown  in Table 2. Xotice that for any given  matrix 
:tl, the  smaller  the  actual  distance D, the higher the 
score. On the other  hand,  for a specific distance D, 
t.he highest score corresponds to the  matrix with 
PAM distance M = D; this score is just  the  relative 
' ,Itropy discussed above. Using a PAM matrix with 
.ii near D, however,  can yield a  near-optimal score. 

Table 3 
Ranyrs of locnl alignment lengths for which various 

P A  Y ntdr i ces  are appropriate 

9SU0 rtticiency range 87 yo efficiency  range 

-1;ttris ( W  bits) comparison (I6 bits) 
!'.U for tiatatwe searching for I-sequencv 

- 
40 9 to t t 4 to I4 
x0 1 9  to 34 6 to 22 

It0 I 9  to 50 ? to 33 
1 6 0  tti to 50 It to 46 
1(W) 36 k J  94 16 to 8-1 
240 4 i  t~ 123 I1 to x0 
280 ciu to 15.5 27 to 101 
322) 53 to 192 34 to It4 
:3riO 94 10 233 42 to 149 

For  example,  the  relative  entropy for D = 160 is 
0-70 bit ,   but any PAM matrix in the range 120 to 
200 yields a t  least 067 bit per position. In practice, 
how near  the  optimai is i t  important to be? 

As argued  above, for a given PAM distance  there 
is a critical length at which alignments are  just 
distinguishable from  chance in a  typical  current 
database  search;  these  lengths are recorded in Table 
1. For the  sake of analysis, we  will assume that it is 
worth  performing an  extra  search  (using a different 
PAM matrix)  only if it is able  to increase the score 
for such  a  critical  alignment by about two bits, 
corresponding to a factor of 4 in significance. Since a 
critical alignment has  about 30 bits of information: 
we will therefore be satisfied using a PAM matrix 
that yields a score  greater  than 93% of the  optimal 
achievable. Using data such as those shown in Table 
2, one  can calculate for which PAM distances D 
(and  thus for which critical lengths) a given matrix 
iM is appropriate;  the results are recorded in Table 
3. Our experience h a s  shown t h a t  perhaps  the most 
typical lengths for  distant local alignments  are those 
for which the PAM-I20 matrix gives near-optimal 
scores, i.e. lengths 19 to 50 residues. Therefore, if 
one wishes to use a single standard  matrix for 
database  searches,  the PAM-I20 matrix  (Table 4 )  is 
a reisonable choice. This matrix  may, however, 
miss short  but  strong or long but weak similarities 
t h a t  contain sufficient information  to be found. 
Accordingly, Table 3 shows that to compiement the 
PAM-I20 matrix,  the PAM40 and PAM-230 (or 
traditional' PAM-250) metrices  can be used. 
Additional matrices  should  improve  the  detection of 
distant similarities onfy  marginally  (i.e. raise their 
scores by at most 2 bits). 

Tf, rather t h a n  searching  a  database  with a query 
sequence, one wishes to compare  two specific 
sequences for which  one already has  evidence of 
relatedness, the background noise is great.ly 
decreased. As discussed above, for two  proteins of 
typical length,  about 16 bits are needed to  
distinguish a local alignment from chance. 
Accordingly, applying  the same criteria as before, a 
matrix  should be considered adequate for those 
PAJI distances at which it yields  an  average score 
within S i ? / ,  of the  optimal.  In  Table 3, we list the 
range of critical lengths  over which various PAM 



matrices are  appropriate for detailcd  psirwiw 
sequence comparison. As a single matrix,  the 
PA>.!-200 spans  the most typical range of local 
alignment lengths, i.e.  16 to 6% . residues. 
Alternatively, if two different matrices are to be 
used, the PAM-80 and PAM-250, which together 
span  alignment lengths ti to 85 residues, or the 
PAM-120 and PAM-320 matrices, which span 
lengths 9 to I24 residues,  appear to  be appropriat.e 
pairs. 

Since it is  convenient  to express substitution 
matrices ils integers, and since a probability factor 
of.2 between score levels is too rough, the  units for 
the PAM-120 matrix shown in Table 4 are half bits. 
The scores in the original PAM-250 matrix (Dayhoff 
et al.: 1978) were scaled as l o x  log,,. Because 
10/(h 10) z 3/(h 2 )  to within 04%, a unit score in 
that  matrix can be  thought of as approximately 
one-third of a bit. 

8. Biological Examples 
As discussed, the particular PAM matrix  that 

best distinguishes distant homologies from chance 
similarities found in a database search  depends on 
the  nature of the homologies present,  and  this 
cannot be known a priori. However, i t  is  frequently 
the case that  distantly related proteins will share 
isolated st.retches of relatively conserved amino acid 
residues, corresponding to active  sites or other 
important  structural features. It has been observed 
that in general the  mutations along genes coding for 
proteins are  not Poisson-distributed (Uzzell & 
Corbin, 1971; Holmquist et al., 1983), suggesting 
that short, conserved regions are  to be expected. As 
shown in Table 3, this means that  the widely used 
PAM-250 matrix generally will not be optimal  for 
locating distant relationships. 

I n  the  examples below,  we compare the PAM-250 

and PAM-] 20 scores for Mel's representing tlisr;.. .!t 
relationships to four different query sequences. 
all cases, we consider relationships  near the limit 
what can be  distinguished from chance in a se 
of the PIR protein squence  database (Release 26.0; 
7,348,350 residues). It will be noticed t h a t  the high- 
est chaince Pm-250 scores are consistently slightly 
smaller than  the highest  chance PAM-I20 scores. 
This is primarily attributable to the fact  that the 
parameter K discussed above  is  about half as large 
for the former scores as for the  latter. Furtherrn(:;e, 
since neither  the PIR database nor a given  query 
sequence ever precisely fits the random protein 
model described by  Dayhoff el al. (1958), the para- 
meter 2 varies  slightly from one comparison to 
another. Therefore, while we will treat the PAM-120 ' 
scores from Table 4 as half bits, .and the PAM 
scores of Dayhoff et al. (1978) as one-third  bits, it 
should be noted that  this is always a slight 
approximation. 

(a) Lipocal ins 
We used the BLAST  program (.4ltschul et 

1990) to  search the PIR database with huma 
poprotein D precursor (PIR code LPHUD; Draynyna 
el al., 1985), using both the PAM-250 (Dayhoff et ai.-' 
1978) and PAM-180 (Table 3)  substitution matrices- 
Huma.n  apolipoprotein D precursor is a 189 resirhe 
glycoprotein that belongs to the lipocalin 
(a2-microglobulin) superfamily, which contains pro- 
teins that exhibit a wide range of functions re1 
to  their ability to bind small  hydrophobic 
The similarities  among these proteins and  their 
logical roles have been ana.lped (Peitsch 8 Bogu 
1990), and crystal structures are a v i l a h k  
several members of the superfamily (Cowan et 
1990). Three proteins  in the superfamily a 
androgen-dependent  epididymal  protein (PI 
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p ‘  
O p t i m a l  PAM-250 Optimal  PAM-120 

PIR code optimal PAM-250 alignment score ( b i t s )  score ( b i t s )  

i- L P H W  25 LGKCPNPPVQENFDVNKYLGRWYEI 49 

SQRTAD 12 IAAGTEGAVVKDFDISKE‘LGFWYEI 36 27.0 33 -5 

~32202 27 HDTVQPNFQQDKFLGRWY 4 4  25.7 

HCHU 28 NIQVQENFNISRIYGKWYNL 47 23.0 

33.5 

30.5 

Highest chance alignment score : 27.0 29.0 

F I R  code of sequence involved: SO0758  SO0758 

. (b) fluman CY ,B-glycoprotein 
We ‘searched  the PTR database with human 

a,B-glycoprotein (PTR code OMHCIB; Tshioka ~t 
al., Igt)Ci), a plasma glycoprotein of unknown func- 
tion, and a member of the immunoglobulin superfa.- 
mily. Lsing  the PAM-950 matris,  the only protein 
in the  database with an MSP that rises above hark- 
ground noise is pig T’o2 F protein (PTR code 
P1,0030: Van de Weghe et al., ISXS), which achieves 
a score of 32.3 bits. A s  shown in Table 6. the score 
for this known homology (\‘an de K’eghe at 01.. 
1988) rises to 45.0 bits when the T’X.\.I-l20 rnatris is 
used instead. In uitlition, two proteins w i t h  
irl1munoglol)ulin domains, kinase-related trans- 
forming  protein prevursor (1’1 R (*ode SOO474: Qiu vt . 

nl.. 1988) and  human T ~ K  chain precursor V-TTI 
region ( P I R  code KSHUVH; Pech & Zachau. 19x4). 
u c . h i c v  seores of 290 and 28.6 bits, resppctively. 
Table 6 illustrates  that both these similarities are 
only just  distinguishable from chance, and that 
using the PAM-250 matrix  both similarities drop in 
score by at least  four  bits. 

( c )  The cystic Jihrosis transmembrane 
conductance reydator 

The muse of cystic fibrosis has been traced to 
mutations in  a protein that bears striking  similarity 
to  many  proteins  involved in the  transport of 
substances  across  the cell membrane (PIR code 
.430300: Riordan et al., 1989). Characteristic 
features of t h e  protein are two nucleotide (ATP)- 
I)inding folds (Higgins el al., 1986). When the PIR 
database is searched  with X30300, many related 



! Optimal PAM-250 Optimal PAM-”20i 

PI?. code Optimal PAM-250 alignment  score (bits) score ( b i t s )  

- 
OMHU 1 B 1 AIEYETQPSLWAESESLLKPLANVTLTCQA 30 

PL0030 1 ALFLDPPPNLWAEAQSLLEPWTSQS 30  32.3 45 .O 

OkMJlB  171 LSEPSATVTIEELAAPPPPVLMHHGESSQVLEPGNKVTLTCVAPLS 216 

SO0474 18 LRGQTATSQPSASPGEPSPPSIHPAQSELiVEAGDTLSLTCIDP 61 2 5 . 0  29.0 

KSHUVH 15 LPDTTREIVMTQSPPTLSLSPGERVTLSCRXQS 48 22.0 2 8 . 5  

Highest chance alignment  score: 27.0 28 -0 

PIR code of sequence  involved: 540102 WGSMHH 

I I 

proteins  may be identified easily  using either the 
1’.4M-250 or t h e  PAM-I20 substitmtoion matrix. 
Ilowever,  several distant relationships  present  are 
harder to dctect. In Table 5 are shown four  optimal 
PAM-250 alignments,  representing homologies to 
each of the two A30300 nucleotide-binding folds. 
Snrw o f  these alignments  has a PAM-250 score as 
great as the highest  chance  score of 31.3 bits. In  
contrast, when the PAM-120 matrix is used. t.hr 

3 

alignments j u m p  in  score hy 4 t o  almost 12 bits, ! 

givitlg,nll but one a score greater than  the highest 
chance PAM-120 score of 3349 bits. (The boundaries . ? 
of th(optima1  alignments  change  slightly  under the i: 
alternate  scdiing scheme.) N o  biologically signifi- 3 
cant. similarity is distinguished by t h e  PAM-250 
matrix that. is n o t .  found using the PAM-120. The ,I 
relalively high chance scores found in this exarcpie 
are partly  attributable to the Icngth of the yuery 

Table 7 
Four MSPs representing distant  relationships, from search,es of the PIR protein swpence dutdase (release 

2641) d h  cystic fibrosis transmemhrnn,e  conductance rc{plator ( PlK code A30300) 

optimal PAM-250 Optimal PAM-120 

P I R  code Optimal PAM-250 alignment  score (b i ts )   score  ( b i t s )  

A30300 438  TPVLIiDIk?FKIERGQLLAVAGSTGAGKTSLLMHIMGELEPSEGKI 4 8 2  

SO5328 i 8  VSKDINLEIQDGEFVVFVGPSGCGKSTLLRMIAGLETVTSGDL 60 28.3 40.0 

BVECDA 11 ~ K N I N L V I P R D K L I V G L S G S G K S S L  40 . 24.7 35.0 - 
A30300 1219 YTEGGNAILENISFSISPGQRVGLLGRTGSGXSTSWLRLLNTEGEI 1267 

QRECFB 19 F R V P G X R L R P L S L r r P A G K G L I G ~ G S G K S T ~ G R  59 29.3 35 .O 

QREBOT 31 DGDVTAVNDLNE’TLRAGETLGIVGESGSGKSQSIUJGMG~TNGRI 77 28.3 . 32.5 

Highest chance alignment  score: 3 i . 3  33.0 

I PIX code of sequence  involved: 
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