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Ch. 1: BLAST Algorithm

fcansansus VeaPrPace-alktl BYMCRRPPIAPadi 1R0arklRaYianlP asacakoYAulme

Questions: When a DNA sequence or protein sequence is a biological sequence?
How can we computationally identify them?

Examples of problems we need to solve along the way:
Problem 1. General scoring schemes — and the max scoring subsequence

Problem 2. The Gambler’s Ruin/Random Walks



The BLAST Algorithm

Authors

* Stephen Altschul
* Warren Gish

* Webb Miller

* Eugene W. Myers
e David Lipman

e “Basic Local Alignment Search Tool”
Journal of Molecular Biology (1990) 215, 403-410



Karlin Altschul Equation

m Number of letters in query
N Number of letters in db
mN Size of search space

As Normalized score

k  minor constant




Gambler’s Ruin problem




In Sir Ronald Fisher we trust!

Renald Yizshaer
{(1890.1962)



Dr. Margaret OQakley Dayhotf
The Mother & Father of Bioinformatics
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Smith and Waterman at Los Alamos, New Mexico
Photo by David Lipman, Taken Summer of 1980

Smith and Waterman




Karlin-Astschul Statistics Theory

 Samuel Karlin and Stephen Altschul




Ch. 2: Genome Assembly and
Haplotype Assembly Algorlthms

Questions: What algorithms to use to assemble DNA pieces into a contigs?
How long are the contigs?
How much the DNA target region is covered by the contigs?

Examples of problems we need to solve along the way
Problem 1. Poisson statistics and DNA and Assembly

Problem 2. Ham Smith’s DNA breaking in a Lab with no windows



Hamiltonian Paths Algorithms for
Genome Assembly

Gene Myers Craig Venter




Eulerian Paths Algorithms for Genome
Assembly

Pavel Pevzner Michael Waterman




Construct the sequence graph on (k-1)-
mers
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Construct the sequence graph on (k-1)-
mers

f1 TTCAGG TTCA For each k-mer (a;...a,), we
create an edge between nodes
fz TTCATGG TCAG labeled a;...a,; and a,...a,.
CAGG .
If those nodes do not exist yet,
f3 ATGGACA TCAT we add them to the graph.
1:4 TTCAT —> CAIG We label the edge by its k-mer,
TGGA
We also store the set of position
1:6 TCGAC GGAC values (f, i, j) in each edglz,
which identify all occurrences of
1:7 GACATC (Cj;,AA"IFéA that k-mer by (fradgment ino)lex,
tart position, end position)*
f,  ACATCGA i
ATCG
TCGA
CGAC
ACAT




Graph reductions: singletons
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Align the reads to the
assembled sequence

TTCATGGACATCGAC

TTCAGG

TTCATGG Firstﬁwde app(ljy ha.s]‘chingh

ATGGACA ggfzth ?rasg::elnte rr:ilgﬁ'xlizrne

TTCAT B f well to the sequence.

fz\ } fs\\ " | This wil produce

CATCGAC “candidate diagonals.”

TCGAC We can then perform
alignment along those

GACATC diagonals, which is more
efficient than using the

ACATCGA entire edit graph.




Statistics of Sequence Graphs: vertices
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Assembly Progression
(Macro View)
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Ch. 3: HMM - the Learning Problem

Hidden Markov Model

* A=(n,A, B,n)
* .  Number of states In the model

baloadxd .- [ o A:  Transition Matrix p(x)
> A=f{ag Li<n
* B Emission Matrix

(nput sequence B= b’w’ outpult

probability
e rt:  Initial State Probabllities

N=<LN, _JIG>

What does machine learning an HMM model mean?

Maximum Likelihood and the Expectation-Maximization problem



Ch. 4 Recombination and Ancestral
Recombination Graphs (ARG)
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How do we reconstruct genealogies of a sample of individuals
incorporating past mutations and recombinations?

Recombination + Phylogenetic Trees = ARG
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Ch. 3: Spectral Clustering

| GRAPH LAPLACIANS

* Quick example
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Sentences in red and graphs are cited from A Tutorial on Spectral Clustering (Ulrike von Luxburg). See reference list at the

enfor detail.



GRAPH CUT POINT OF VIEW
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RANDOM WALK POINT OF
VIEW

*  What is random walk?
— Arandom walk on a graph is a stochastic process which randomly jumps from vertex to vertex.
*  How does it walk?
— Formally, the transition probability of jumping in one step from vertex vi to vertex vj is
proportional to the edge weight wij and is given by pij := wij/di.
—  The transition matrix P = (pij)i,j=1,...,n of the random walk is thus defined by

I o & g
e Initial condition? P =D W,

— aunique stationary distribution mt = (n1, ..., ntn) , where mi = di/ vol(V ).
*  Clustering in random walk?

— Finding a partition of the graph, such that the random walk stays along within the same
cluster and seldom jumps between clusters.

— Intuitively, it is the same as the graph cut.

Se?tercljces iln red and graphs are cited from A Tutorial on Spectral Clustering (Ulrike von Luxburg). See reference list at the
enfor detail.



Ch. 6 Suffix Trees in Linear Time
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Ch. 7 Protein Folding Algorithms
(Intro)

* Protein Folding on Lattice Models

* AlphaFold and Deep Learning



High-level Overview of Architecture of
AlphaFold
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Deep learning uses sequential modules (layers) to
progressively extract information (learn) from the
input data.



The
Protein
Folding
Problem

Mixed character of the problem :

continuous mathematics -- geometry of surfaces &
discrete mathematics -- combinatorics of folds






