
Suffix trees continued

Takes on') time to construct a suffix tree for text X of length
↑
after constructing a suffix tree for X , we can determine if a substring p is in X

in optimal time

Right now, our suffix free takes quadratic space , but we can make it take

linear space root $ 7
we can compress the

branches of
X = abcaab C D

A

suffixes(1) : a b c aa b $
O

d
O

o $ the tree $ 7

a D
. $

D

bcaa b $ b O

6 caab$
A

caab $: 3 % ab b

O O

$

A · $

aab $:
4 %.. 5

4
5

6

ab
aa
b

a b $
3 b

$8 caab$

b $ O I

$
$

I

2 t
[7 ,7) 7

2

Xabcaab$
[3 ,7] [ii]

[6 ,6]

1234 567
·

(7,7)
i 517] (i) (77)

5 6
This 4

5combodressia 3:
72

23 ,7)

now we have a oln) space tree : I

2
-> a tree w/ n leaves 11 for each of the n suffixes) has at most

v

internal nodes -> n + (n- 1) = 2n-1 total nodes

no more thanIn edges labeled wh 2 numbers -> linear space

suffix treeSummary
a suffix tree T is a data structure that takes a string X of lengthn as input.

It contains all suffixes of X in an efficient way such that :
the

1 . T stores the starting position of each suffix of X .

Leaves
cor intervals)

2 . T stores each substring of X . Edges have strings
-

as labels

3. Each Suffix can be identified as a path label from the root to

some leaf of T and Vice Versa : each leaf has I suffix as path label

from the root to the leaf.

4 . every internal node has at least 2 successor nodes

5 . every edge leaving some node is labeled with substrings that have

different 1 characters

6 . every leat is labeled wh the starting position of the suffix of X it has as path label.

