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ABSTRACT An unusual pattern in a nucleic acid or pro-
tein sequence or a region of strong similarity shared by two or
more sequences may have biological significance. It is therefore
desirable to know whether such a pattern can have arisen
simply by chance. To identify interesting sequence patterns,
appropriate scoring values can be asigned to the individual
residues of a single sequence or to sets of residues when several
sequences are compared. For single sequences, such scores can
reflect biophysical properties such as charge, volume, hydro-
phobicity, or secondary structure potential; for multiple se-
quences, they can reflect nucleotide or amino acid similarity
measured in a wide variety of ways. Using an appropriate
random model, we present a theory that provides precise
numerical formulas for assessing the statistical significance of
any region with high aggregate score. A second class of results
describes the composition of high-scoring segments. In certain
contexts, these permit the choice of scoring systems which are
"optimal" for distinguishing biologically relevant patterns.
Examples are given of applications of the theory to a variety of
protein sequences, highlighting segments with unusual biolog-
ical features. These include distinctive charge regions in tran-
scription factors and protooncogene products, pronounced
hydrophobic segments in various receptor and transport pro-
teins, and statistically ignificant subalignments involving the
recently characterized cystic fibrosis gene.

Nucleic acid and protein sequence analysis has become an
important tool for the molecular biologist. Determining what
is likely or unlikely to occur by chance may help in identifying
sequence features of interest for experimental study. A
pattern ofpotential interest in a protein sequence might be an
unusual local concentration of charged residues or of poten-
tial glycosylation sites; a region of high similarity shared by
two or more sequences might be evidence of evolutionary
homology or of common function.

Statistical methods for evaluating sequence patterns can be
based on theoretical models or on permutation reconstruc-
tions of the observed data (refs. 1-4; for a recent review on
patterns in DNA and amino acid sequences and their statis-
tical significance, see ref. 5). Here we use a "random" model
appropriate to the data to provide a benchmark for analyzing
various data statistics. The independence random model
generates successive letters of a sequence in an independent
fashion such that letter aj is selected with probability pj. In the
case of proteins, the pj are usually specified as the actual
amino acid frequencies in the observed sequence. A random
first-order Markov model prescribes Pjk as the conditional
probability of sampling letter ak following letter aj. (In this
case the Pjk would correspond to the observed diresidue
frequencies in a protein sequence.) More complex random
models could accommodate more elaborate long-range de-

pendencies. For these models, theoretical results (distribu-
tional properties) have previously been obtained for a variety
of sequence statistics such as the length of the longest run of
a given letter or pattern (allowing for a fixed number of
errors), the length of the longest word (oligonucleotide,
peptide) in a sequence satisfying a prescribed relationship
(e.g., r-fold repeat, dyad pairing), and counts and spacings of
long repeats (5-14). Several of these analyses have been
extended to deal with comparisons within and between
multiple sequences, including the identification and statisti-
cal evaluation of long common words and multidimensional
count occurrence distributions for various word relationships
(e.g., refs. 5, 7, 8, 12). One limitation to the applicability of
these results has been their inability to allow for properties or
mismatches that vary in degree. For example, in describing
the charge or hydrophobicity ofamino acid residues, it would
be more informative to use different score levels, and when
comparing sequences one may wish to count a mismatch
between isoleucine and valine differently than a mismatch
between glycine and tryptophan.

In this paper we describe a rigorous statistical theory that
provides explicit formulas for characterizing significant se-
quence configurations with reference to a general scoring
scheme. In particular, we determine the distribution of high
aggregate segment scores and the distribution of the number
of separate segments of significantly high score. A second
class of results deals with the letter composition of high-
scoring segments, which in certain contexts provides a
method for choosing suitable scoring schemes. We will
discuss the theory in two primary contexts: (i) the analysis of
a single protein sequence with the objective of identifying
segments with statistically significant high scores for hydrop-
athy strength, charge concentration, size profile, phosphor-
ylation potential, or secondary structure propensity; (ii)
multiple sequence comparisons for establishing evolutionary
histories or protein segments with common function and/or
structure.

Scoring assignments for nucleotides or amino acids may
arise from a variety of considerations. Scoring criteria can be
provided by biochemical properties (e.g., charge, hydropho-
bicity), physical properties (e.g., molecular weight, shape),
kinetic properties (e.g., turnover rates), or associations with
secondary structures (a-helices, j3-strands, turns, open
coils). Amino acid classifications have also been based on the
differences between codons (15) and on studies of similar
tertiary structures (16). Matching scores can be adduced
empirically from studies of evolutionary relationships (17,
18): Dayhoff et al. (18) studied groups of closely related
proteins from more than 70 superfamilies to construct a
statistically based amino acid substitution scoring matrix.
Finally, random scores may be used as controls.
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Henceforth, we designate the alphabet in use by {al, a2,
* * *, ar} and the corresponding letter scores by {s,, s2, . . ..
Sr}. For nucleotides, r = 4; for purines versus pyrimidines, r
= 2; for codons, r = 61; for the standard amino acids, r = 20;
for an amino acid chemical classification [aliphatic, aromatic,
. . . (see ref. 19)], r = 8; and for the charge attributes of amino
acids, r = 3. It is useful to describe some concrete natural
scoring assignments.

(i) Scores based on charge. For lysine and arginine, s =
+ 1; for aspartate and glutamate, s = -1; for histidine s = 0.04
(at pH 7.2 in blood serum) or s = 0.44 (at pH 6.1 in muscle
cells); for other amino acids, s = 0. Alternatively, we might
take s to be the pK value of an amino acid minus 7.

(ii) Scores associated with a run of a particular letter type
a. Here we set the score of letter a to + 1 and the score of all
other letters to -oo. Obviously, only a run of the letter a can
have positive score.

(iii) Scores derived from target frequencies. In a random
sequence the letters are sampled with probabilities {pl, ... ..
pr}, respectively. Let {qj, q2, .. , q,} be a set of desirable
"target frequencies" of the letter types. In certain contexts
that will be discussed below, the scores si = log(qi/p,), i = 1,
2, ... , r, (resembling a likelihood ratio) are appropriate.

(iv) Scores based on structure alphabets. Dickerson and
Geis (20) classified amino acids into internal (i), external (e),
and ambivalent (a) types. This is a good alphabet for studying
hydrophobicity. An associated scoring scheme, more refined
than the three-letter alphabet and reasonably consistent with
it, is the Kyte-Doolittle scale or any of more than 12
alternative scales that have been proposed for hydrophobic-
ity (see refs. 21 and 22).

Theory for a Single Sequence

We are given an alphabet of letters A = {a,, a2,. . . , a,}. For
our ends, a random sequence consists of letters sampled
independently from A with respective probabilities {P1, P2,
...* Pr}. The theorems we describe have generalizations to
a random model in which successive letters have a Markov
dependence (for proofs and extensions, see refs. 23, 24).
Associated with each letter ai is a score si. We are primarily
interested in the segment of the sequence with greatest
aggregate (additive) score, which we will call the maximal
segment; its score we call the maximal segment score. The
length of this segment is determined by the data rather than
being preset arbitrarily. Traditional profile studies of protein
sequences use a fixed scan or window length and keep a
record of moving window scores (21). However, no clear
criteria for choosing the window length have been proposed
and no rigorous significance results are available to date.
We impose two important but reasonable restrictions on

the set of scores. First, we require at least one score to be
positive. Second, we require the expected score per letter E
= I pisi to be negative. If, on the contrary, E were positive,
the maximal segment would tend to be the whole sequence,
and this is not of interest. As discussed below, the case of E
= 0 is interesting but more recondite.
In many circumstances the assumption E < 0 is intrinsic.

For example, in the simple case of runs of a letter type
(example ii of the introduction), clearly E = -oo. In the model
of scores calculated using a set of "target frequencies"
(example iii of the introduction), whenever the frequencies
{q,} are not identical to the {p,}, then L pisi = Y pi log(qi/p,)
< 0 holds automatically. Finally, for any set of scores {s,} with
E positive, the modified scores si = si - aE with a > 1
satisfies I pis! < 0. In this case finding a segment with large
score using the {s} amounts to selecting a segment with score
in excess of its statistical mean score by at least the factor a
> 1.

Limit Distribution for Maximal Segment Scores

To assess the statistical significance of high-scoring seg-
ments, we need to know the probability distribution for
maximal segment scores from a random sequence oflength n.
Theorem 1 provides an answer to this question. All the results
described below make use of a key number A* which is the
unique positive solution to the equation

r

Ipi exp{As}= 1.
i= 1

[1]

Note that A = 0 also solves the equation.
For a sequence of length n, let M(n) denote the maximal

segment score. It can be proved that M(n) is of the order (In
n)/A* (24). Subtracting this centering value from M(n), we
can ask what is the limiting probability distribution for M(n)
= M(n) - (In n)/A*.
THEOREM 1. The random variable M(n) (the centered

maximal segment score) has the close approximating distri-
bution

Prob{M(n) > x} 1 - exp{-K*e-A*x}. [2]

A formula for K*, given in the appendix, is a rapidly
converging series. A subroutine in the C programming lan-
guage that calculates A* and K* for any valid set of scores and
associated probabilities is available from the authors.
The distribution on the right of Eq. 2 is not symmetric but

is positively skewed and unimodal with mode at (In K*)/A*.
The maximal segment score in the case of zero expected
score per letter (E = 0) has order growth M(n) - n /2 rather
than order log n. Explicit limit distributional formulas and
applications for the mean zero case will be presented else-
where (23, 24).
The number of "separate" high-scoring segments-i.e.,

those with scores exceeding (In n)/A* + x where x is a real
parameter, and sufficiently far apart-is closely approxi-
mated by a Poisson distribution with parameter K*
exp{-A*x} (24). Thus, the probability of finding m or more
distinct segments with score greater than or equal to S is
closely approximated by 1 - e-Y XI` ye/i!, where y = K*n
exp{-A*S}. For m = 1 this reduces to Eq. 2. Using this
distribution, we can assess whether the count of segments
with moderate to high score over a whole protein is unusually
high (see examples below).
Theorem 1 allows one to calculate explicitly the probability

that some segment from a random sequence has score greater
than any given value. In particular, one can tell when the
segment score value occurs in the 1% or 5% tail of the
distribution. This at least provides a benchmark for assessing
the statistical significance of high-scoring segments. As dis-
cussed below, the theorem can also be generalized to apply
to pairwise or multiple sequence comparison, allowing the
significance of certain sequence alignments to be evaluated.

Composition of the Maximal Segment

In many cases there may be natural criteria underlying score
assignments. In other situations, however, one is confronted
with the problem of choosing appropriate individual letter
scores. A second theorem concerning the composition of
high-scoring segments bears directly on this question.
Suppose we wish to search a set of proteins for regions

characterized by an unusual amino acid composition but by
no other easily described feature. For example, a transmem-
brane region might consist preferentially of hydrophobic
residues but have no other obvious structure. We would like
a set of individual letter scores to distinguish transmembrane
regions. Which scores are best suited to this task?
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Imagine we have experimentally identified a large collec-
tion of transmembrane regions. If we give positive scores to
hydrophobic and negative scores to hydrophilic residues,
these regions are likely to be the highest scoring segments of
their respective proteins. However, it is possible that many
other proteins that contain no transmembrane regions will
have equally high-scoring segments merely by chance. Is
there any way better to separate by score the true transmem-
brane segments from the illusory ones?
Suppose that there is some statistical difference between

the respective amino acid frequencies of "true" and high-
scoring "chance" segments. For instance, glycine might
occur more frequently among the true segments. In this case,
increasing the score for glycine would tend better to distin-
guish the true segments. Therefore, a scoring scheme can be
"optimal" for identifying a particular sort of region only if
there is no statistical difference between the composition of
high-scoring chance segments and the composition of simi-
larly scoring true segments. It is this observation that makes
the following theorem concerning the composition of high-
scoring chance segments relevant to the selection of scores.
THEOREM 2. As the length of a random sequence grows

without bound, the frequency of letter ai in any sufficiently
high-scoring segment approaches pi exp{A*si} with probabil-
ity 1. In particular, this is true for the maximal segment.
Theorem 2 states that in a maximal or high-scoring segment

of a random sequence, letter ai tends to occur with the
frequency qi = pi exp{A*s1}. Notice that the si can all be
written in the form

si= ln(qi/p1)/Ak. [3]

In other words, the score associated with each letter is the
logarithm to some base of q/p, where p is the frequency with
which the letter appears by chance (i.e., its frequency in a
typical sequence), and q is the letter's implicit target fre-
quency. Since any set of individual scores has an implicit set
oftarget frequencies, the question ofwhat is an "optimal" set
of scores can be recast into the question of what is an
"optimal" set of target frequencies.
As we argued above, the best target frequencies to choose

are simply those found in the sort of region we seek to
identify. So to construct an appropriate set of scores, we need
merely to characterize the letter distribution among such
regions. The score for letter ai can then be set equal to the
corresponding "log-likelihood ratio" log(qi/pi).

Unfortunately, we may not always have a good model of
the type of segment we consider of interest. As discussed
earlier, individual scores can arise from a variety of consid-
erations, and we may know only that we seek regions rich in
a certain sort of residue. However, the realization that any set
of individual scores has an implicit target distribution can still
guide our choice of reasonable scores.

Sequence Comparisons

A basic problem in biological sequence comparison is, given
two or more nucleic acid or protein sequences, to find similar
segments in each. For protein sequences, one approach is to
define a score matrix for aligning pairs ofamino acids (16-18).
Relatively similar amino acids receive various positive
scores, while dissimilar amino acids receive negative scores.
Alignments can also allow for insertions/deletions (gaps).
Algorithms for finding high-scoring subalignments (i.e.,
alignments of segments from two or more sequences) have
been used widely by molecular biologists (25-29). A natural
question is, when are such subalignments statistically signif-
icant?
A variation of Theorem 1 applies to sequence alignments

when gaps are not allowed. Consider two independent ran-

dom sequences with letter probabilities {P,. . . Pr} and {pj,
. .. , p.P}, respectively. The pair of letters ai of the first
sequence and aj of the second sequence occurs with proba-
bility Pipj. Let the score for such a pairing be sij. We assume,
as previously, that the expected pair score ij, PiPj4sij is
negative and that there is some probability of a positive
score. The number A* is determined (compare with Eq. 1) as
the unique positive solution of the equation

> Pipj exp{Asijl = 1.
i,j

[4]

Subject to the restriction that the probability distributions
{p,} and {pj} for the two sequences are not too dissimilar and
that the sequence lengths m and n grow at roughly equal
rates, Theorem I holds for the maximal scoring segmental
alignment, but with n replaced by the product mn. Without
these restrictions, Theorem I overestimates the probability of
high maximal subalignment scores M so that the evaluation
of statistical significance is conservative. For large x, we
have

P{M > ln nm +K*&A*xPrbM ~ +xj- ~e [5]

Thus any alignment of segments from two sequences has an
unusually high score (statistically significant at the 1% level)
ifM exceeds (In nm)/A* + x0, where x0 is determined so that
K*exp{-A*xo} = 0.01.
The theorem also generalizes in the natural way to the

comparison of more than two sequences. The theorem must
be used with some caveats because the random model for
protein sequences upon which it relies is only a reference
standard. It is best used for showing that the scores of certain
subalignments can be explained by chance alone.
While it has been proved only for the single-sequence case,

Theorem 2 is conjectured to hold for multiple-sequence
comparisons. It has been proved for the special case in which
the scores for all aligned pairs of identical residues are
positive, and all other scores are -oo (14). We assume below
that an analog of Theorem 2 holds for multiple-sequence
comparison.
We shall consider the concept of "optimal" protein com-

parison scores, assuming we are restricted to seeking sub-
alignments lacking gaps and to assigning scores only to the 20
x 20 = 400 pairs of amino acids. Over the years many
different such score matrices have been proposed, using a
wide variety ofrationales (see ref. 16). We wish such a matrix
to differentiate as accurately as possible those subalignments
similar by chance from those similar by descent and those
emerging through convergent evolution.

In brief, given a random protein model, any score matrix
can be specified up to a constant factor by its implicit target
distribution for paired amino acids. The composition of
high-scoring subalignments of a set of random sequences will
approach this distribution. If this composition is distinguish-
able from that found among similarly scoring subalignments
that represent related segments, then a different matrix would
better separate the two classes. Thus, the optimal target
frequencies for amino acid pairs is simply that found among
properly aligned related, but not strongly related, proteins.
This is just the set offrequencies Dayhoffetal. (18) estimated
in constructing their widely used protein comparison matrix
(PAM-250). It is possible to criticize their method for calcu-
lating target frequencies (30), but our argument supports their
basic log-likelihood approach.
While these observations do not imply that the PAM-250

score matrix cannot be improved, they do suggest that the
most direct approach to obtaining better matrices is through
the refined estimation of random and target distributions. In
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analogy to the one-sequence transmembrane example dis-
cussed previously, one can start by examining related sets of
segments from a variety of protein superfamilies to estimate
the amino acid substitution frequencies {qjj} found as the
result of evolution over substantial periods of time. Then,
using individual amino acid frequencies {p,} from the same set
of proteins, one can calculate the "log-odds" scores sij =
log(qj/pjpj).
Examples

A broad-ranging study applying the statistical theory of the
paper will be presented elsewhere. Representative examples
of maximal scoring segments with scores based on charge,
hydropathy, cysteine clusters, and amino acid similarity are
given below.

(a) For high-scoring mixed charge segments (of basic and
acidic residues) we use the scoring scheme s = 2 for aspar-
tate, glutamate, lysine, arginine, and histidine and s = -1 for
the other amino acids.

(i) Human 67-kDa keratin cytoskeletal type II [length n =
643 amino acids, the frequency ofcharged amino acids,fts =
2) = 20.1%]. Maximal segment positions 238-291 (contains
11 + and 14 - residues), aggregate score 21; probability P of
a score of this level or greater < 0.008. Second highest
distinct segment, 427-463, score 14; this region is part of a
mixed charge cluster in the sense of refs. 31 and 32 at the
positions 427-491, containing 10 + and 16 - residues. The
existence of two or more separate statistically significant
charge clusters in a protein sequence is rare, found in less
than 3% of all protein sequences of more than 10,000 exam-
ined (33). The keratin protein also encodes two significantly
long uncharged segments at positions 42-152 and 518-586.

(ii) Human c-jun, nuclear transcription factor and pro-
tooncogene product [n = 331, f(s = 2) = 20.2%]. Maximal
segment 246-285, score 29, P < 2 x 10-4. c-jun, a member
of the AP1 family of transcription factors (34), features a
significant mixed charge cluster at positions 246-285, con-
taining 10 + and 7 - residues. This charge centers on a
positive charge cluster (positions 252-273) involving 12 + and
1 - residues which has sequence similarity to the DNA-
binding domain of GCN4 (35). Preceding the charge cluster,
c-jun contains a region of 85 residues involving only one
positive and one negative charge. The charged region in c-jun
(jun-A in mouse) is highly conserved injun-B andjun-D (36),
which also preserve the uncharged central portion without
amino acid identity (37).

(b) High-scoring acidic charge segments: score assign-
ments, s = 2 for aspartate and glutamate; s = -2 for lysine
and arginine; s = -1 otherwise.
Drosophila zeste protein, nuclear transcription factor [n =

575, fis = 2) = 9.4%, f(s = -2) = 8%]. Maximal segment
194-209, score 11, P 0.0037; this segment contains 10
acidic and no basic residues. The zeste protein involves an
unusual charge distribution featuring multiple charge clusters
of positive, negative, and mixed sign, respectively, as well as
a long uncharged region. The uncharged region is abundant
with glutamine and alanine, one of several structures of a
regulatory activating domain (38). While functional domains
of the zeste protein have not been delineated, it is known to
regulate in Drosophila embryogenesis Ubx (Ultrabithorax),
white, and DPP (decapentaplegic complex) gene expression
and is thought to interact with other protein factors in
mediating transactivation and transvection (39).

(c) High-scoring basic charge segments: score assign-
ments, s = 2 for lysine, arginine, and histidine; s = -2 for
aspartate and glutamate; s = -1 otherwise.

(i) Drosophila sodium ion channel protein [n = 1320,f(s =
+2) = 10.2%,f(s = -2) = 9.9%]. Maximal segment 930-943,
score 10, P - 0.034. There are three separate segments of

score exceeding ln n/A* = In 1320/0.94 = 7.6, which for the
Poisson distribution with parameter K* = 0.337 has proba-
bility of occurrence P 0.0050.

(ii) Zeste protein [n = 575, fJs = 2) = 1.0o, f(s = -2) =
9.4%], maximal segment 78-86, score 12, P 0.0040; this is
part of a positive charge cluster, residues 78-128, containing
18 basic and 3 acidic residues; see ref. 40.

(iii) U1 70-kDa small nuclear ribonucleoprotein is a prime
factor of the spliceosome ensemble, acting mainly at the 5'
donor intron site (41) [n = 614,f(s = +2) = 25.1%,f(s = -2)
- 18.5%]. Maximal segment 407-483, score 37, P < 2 x 10-4.

(d) Strong hydrophobic segments: score assignments, s =
+1 for isoleucine, leucine, valine, phenylalanine, methio-
nine, cysteine, and alanine; s = -1 for glycine, serine,
threonine, tryptophan, tyrosine, and proline; s = -2 for
arginine, lysine, aspartate, glutamate, histidine, asparagine,
and glutamine.

(i) Drosophila engrailed, participates during embryogen-
esis in control ofanterior-posterior segment determination [n
= 552,f(s = +1) = 31.7%,fts = -1) = 31.9%]. Maximal
segment 63-88, score 17, P 1.8 x 10-5; this segment is rich
in alanine; second maximal segment 232-243, score 10, P <
0.015; the long stretch 302-394 contains a single charged
residue but is abundant in serine and glutamine (see refs. 38
and 40).

(ii) Human c-mas, angiotensin receptor protein [n = 325,
f(s = +1) = 46.8%,f(s = -1) = 29.8%]. Maximal segment
186-212, score 15, P 0.080. c-mas is substantially hydro-
phobic, possessing seven potential transmembrane segments
reminiscent of rhodopsin channel proteins (42). c-mas at its
carboxyl terminus has a strong mixed charge cluster (40).

(iii) Cystic fibrosis (CF) gene product identified in ref. 43
[n = 1480,f(s = +1) = 41.6%,f(s = -1) = 26.8%]. Maximal
segment 986-1029, score 21, P 0.0010; second maximal
segment 859-884, score 17, P 0.0105. The latter region is
preceded by an acidic charge cluster at positions 819-838.
Sequence comparisons in ref. 43 project the CF gene product
as structurally similar to a membrane-associated transport
protein.

(e) Cysteine cluster: score assignments, s = S for cysteine
and s = -1 otherwise.
Human thrombomodulin, participates in down-regulating

thrombin levels of the coagulation pathway [n = 575,fts = 5)
= 8.5%]. Maximal segment 404-427 (contains six cysteine
residues), score 12; P 0.91. The high P value indicates that
there are no striking cysteine clusters in this protein relative
to the high cysteine frequency 8.5%.

(f) Sequence comparisons, identifications are of maximal
subalignments; score assignments, PAM-250 matrix, see ref.
18.

(i) Human phenobarbital-inducible cytochrome P450,
fragment 331 residues, compared with alkane-inducible yeast
cytochrome P450 (see ref. 44 for a recent review on cy-
tochrome P450s); the maximal subalignment occurs at posi-
tions 265-297 in first sequence and positions 39-71 in second
sequence, score 62, P 0.010.

(ii) CF gene product (1480 residues); maximal internal
similarity comparison aligns positions 497-586 with positions
1295-1384, score of this subalignment is 120, P < 10-5. This
subalignment is consistent with the third internal similarity
region reported in ref. 43.

(iii) A complete data base similarity search for the CF
protein sequence gave a significant alignment with molybde-
num transport protein chlD ofEscherichia coli (B26871 ofthe
Protein Identification Resource data base, length 300), the
maximal subalignment here involves the 48 residues in the CF
protein at positions 540-587 and the residues of the molyb-
denum transport protein at positions 121-168, score 99, P <
10-4. This subalignment was not reported in ref. 43.

Evolution: Karlin and Altschul
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Appendix

To give a general formula for the parameter K*, we need to
develop some notation. Let Sk be a random variable repre-
senting the sum of the scores of k independently chosen
letters. Let E(X) be the expected value ofthe random variable
X-i.e., the sum ofx Prob(X = x) over all values x thatX can
attain. Let E(X; X > 0) denote the same sum, but taken only
over possible values ofX that are greater than 0.
We need to define the constant C*.

exp{ -2E - (E[eAk; Sk < 0] + Prob(Sk 2 0))}
C*= A*E[SleA*S1]

Then the parameter K* of Theorem I in the text is bounded
between

K- = C*( A*8 1), K+ =C* 1 )

where 8 is the smallest span of score values. When all scores
are integers with greatest common divisor 1, then 8 = 1. A
rigorous statement of Eq. 2 is that for n large (in practical
terms n 2 150 suffices)

1 - exp{-K- e-A x} c Prob{M(n) > A* + x}

1 - exp{-K+e-A*X}. [6]

Using K+ for K* always provides a conservative estimate of
statistical significance. The infinite series for C* converges
geometrically fast, so that only a small number of terms are
needed to get a good estimate of K* (i.e., K+).
For certain sets of scores the formulas above can be

simplified to give closed-form expressions for A* and K*. For
example, if score 1 occurs with probability p, score 0 with
probability r, and score -1 with probability q where q > p,
then A* = ln(q/p) and K* = (q p)2/q.
Theorem 1 allows explicit calculation ofthe probability that

some segment from a random sequence has score less than or
equal to any given value. For example, consider a specific
protein of length n and set of amino acid scores. We wish to
calculate the level below which 99%o of the maximal segment
scores for random sequences with similar composition and
length will fall. First, we take the amino acid probabilities
for a random protein model directly from the protein at
hand. From these probabilities and the given scores, we can
calculate the parameters K* and A* as described above.
Solving the equation exp{-e-A*x} = 0.99 for x yields x =

[-ln ln(1/0.99)]/A*. Any segment with score greater than
[(In n + In K*)/A*] + x is then considered significant at the
99% level.
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