CSCI-1680
DNS

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti
Administrivia

• TCP Milestone II: Schedule meeting by this Friday, April 21
 – Meeting slots available soon
 – Should by sending/receiving with sliding window—no retransmissions/shutdown/close yet
• TCP Milestone II Gearup: tonight (April 19), 7pm, CIT368 (and also on Zoom)
• HW3: Out soon, short, due next Tuesday
The story so far

Transport layer: send packets to IP:port,
 eg. 128.148.10.3 port 80

Is this how users interact with the network? No!
A new abstraction

What we have: **IP Addresses**
- Numerical address appreciated by routers
- Fixed length, binary numbers
- Hierarchical, related to host’s location in the network

Examples: 128.148.32.110, 212.58.224.138

Want: Host names
- Mnemonics appreciated by humans
- Variable length, string characters
- Provide little (if any) information about location

Examples: google.com, www.cs.brown.edu, bbc.co.uk
Separating Naming and Addressing

cs.brown.edu => 128.148.32.110

Why?
• Names are easier to remember
• Addresses can change underneath
 – e.g, renumbering when changing providers
• Useful Multiplexing/sharing
 – One name -> multiple addresses
 – Multiple names -> one address
Another Change in Layers…

• Remember ARP
 – ARP: maps IP addresses to MAC addresses
Scalable (Address <-> Name) Mappings

Original way: one file: hosts.txt
- Flat namespace
- Central administrator kept master copy (for the Internet)
- To add a host, emailed admin
- Downloaded file regularly
<table>
<thead>
<tr>
<th>HOST NAME</th>
<th>CPUtype:</th>
<th>HOST ADDRESS</th>
<th>SPONSOR</th>
<th>LIAISON</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>PDP-11/70(UNIX)</td>
<td>10.2.0.54</td>
<td>VDH</td>
<td>ARPA</td>
</tr>
<tr>
<td>ACCAT-TIP</td>
<td>PDP-11/70(UNIX)</td>
<td>10.2.0.35</td>
<td>ARPA</td>
<td>McBride, William T. (MCBRIDE@UWUSC-IESC) Naval Ocean Systems Center Code 8321 271 Catalina Boulevard San Diego, California 92152 (714) 225-2083 (AV) 953-2083</td>
</tr>
<tr>
<td>AEROSPACE</td>
<td>H-316</td>
<td>10.2.0.65</td>
<td>AFSC</td>
<td>Nelson, Louis C. (LOD@AEROSPACE) Aerospace Corporation AZ/1013 P.O. Box 92957 Los Angeles, California 90009 (213) 615-4424</td>
</tr>
<tr>
<td>AFGL</td>
<td>VAX-11/780(UNIX)</td>
<td>10.1.0.66</td>
<td>AFSC</td>
<td>Consentino, Antonio (CONSENTINO@AFSC-HQ) Air Force Geophysics Laboratory SUNA Mail Stop 30 Hanscom Air Force Base, Massachusetts 01731 (617) 861-4161 (AV) 478-4161</td>
</tr>
<tr>
<td>AFGL-TAC</td>
<td>PDP-11/50 (RSX11M)</td>
<td>10.2.0.66</td>
<td>AFSC</td>
<td>Consentino, Antonio (CONSENTINO@AFSC-HQ) Air Force Geophysics Laboratory SUNA Mail Stop 30 Hanscom Air Force Base, Massachusetts 01731 (617) 861-4161 (AV) 478-4161</td>
</tr>
<tr>
<td></td>
<td>C/30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Scalable (Address <-> Name) Mappings

Original way: one file: hosts.txt
- Flat namespace
- Central administrator kept master copy (for the Internet)
- To add a host, emailed admin
- Downloaded file regularly

Is this feasible today? Lol no.
Enter: DNS

Domain Name System (DNS)
• Originally proposed by RFC882, RFC883 (1983)
• Distributed key-value store, before it was cool

• Distributed protocol to translate hostnames -> IP addresses
 – Human-readable names
 – Load-balancing/content delivery
 – So much more…
Goals for DNS

• Scalability
 – Must handle a huge number of records
 • With some software synthesizing names on the fly
 – Must sustain update and lookup load

• Distributed Control
 – Let people control their own names

• Fault Tolerance
 – Minimize lookup failures in face of other network problems
The good news

• Properties that make these goals easier to achieve
 1. Read-mostly database
 Lookups MUCH more frequent than updates
 2. Loose consistency
 When adding a machine, not end of the world if it takes minutes or hours to propagate

• These suggest aggressive caching
 – Once you’ve lookup up a hostname, remember
 – Don’t have to look again in the near future
Hierarchical namespace broken into zones

cslab1a.cs.brown.edu
How it works

• Hierarchical namespace broken into zones
 – root (.), edu., brown.edu., cs.brown.edu.,
 – Zones separately administered :: delegation
 – Parent zone tells you how to find servers for subdomains

• Each zone served from multiple replicated servers
• Lots and lots of caching
DNS Architecture

- Hierarchy of DNS servers
 - Root servers
 - Top-level domain (TLD) servers
 - Authoritative DNS servers
- Two "types" of DNS servers
DNS Architecture

• Hierarchy of DNS servers
 – Root servers
 – Top-level domain (TLD) servers
 – Authoritative DNS servers

• Two “types” of DNS servers (may overlap)
 – Authoritative servers: “owners” of certain DNS records
 – Resolvers: process lookups, caches authoritative records
Resolver operation

- Apps make **recursive** queries to local DNS server (1)
 - Ask server to get answer for you
- Server makes **iterative** queries to remote servers (2,4,6)
 - Ask servers who to ask next
 - Cache results aggressively
DNS Root Server

• Located in New York
• How do we make the root scale?

Verisign, New York, NY
DNS Root Servers

- 13 Root Servers (www.root-servers.org)
 - Labeled A through M (e.g., A.ROOT-SERVERS.NET)
- Does this scale?
DNS Root Servers

- 13 Root Servers (www.root-servers.org)
 - Labeled A through M (e.g., A.ROOT-SERVERS.NET)
- Remember anycast?
DNS Root Servers: Today

From: www.root-servers.org
“Types” of DNS servers

• Top Level Domain (TLD) servers
 – Generic domains (e.g., com, org, edu)
 – Country domains (e.g., uk, br, tv, in, ly)
 – Special domains (e.g., arpa)
 – Corporate domains (...)

• Authoritative DNS servers
 – Provides public records for hosts at an organization
 – Can be maintained locally or by a service provider

• Recursive resolvers
 – Big public servers, or local to a network
 – Lots of caching
DNS Caching

• Recursive queries are expensive
• Caching greatly reduces overhead
 – Top level servers very rarely change
 – Popular sites visited often
 – Local DNS server caches information from many users
• How long do you store a cached response?
 – Original server tells you: TTL entry
 – Server deletes entry after TTL expires
Negative Caching

• Remember things that don’t work
 – Misspellings like www.cnn.comm, ww.cnn.com
 – Is the cost of these two queries the same?

• These can take a long time to fail the first time
 – Good to cache negative results so it will fail faster next time

• But negative caching is optional, and not widely implemented
Reverse DNS

How do we get the other direction, IP address to name?

• Addresses have a natural hierarchy:
 – 128.148.32.12

• Idea: reverse the numbers: 12.32.148.128 …
 – and look that up in DNS

• Under what TLD?
 – Convention: in-addr.arpa
 – Lookup 12.32.148.128.in-addr.arpa
 – in6.arpa for IPv6
DNS Protocol

• TCP/UDP port 53
• Most traffic uses UDP
 – Lightweight protocol has 512 byte message limit
 – Retry using TCP if UDP fails (e.g., reply truncated)
• TCP requires messages boundaries
 – Prefix all messages with 16-bit length
• Bit in query determines if query is recursive
% dig cs.brown.edu @10.1.1.10

; <<>> DiG 9.10.6 <<>> cs.brown.edu @10.1.1.10
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 8536
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1220
;; QUESTION SECTION:
;cs.brown.edu. IN A

;; ANSWER SECTION:
cs.brown.edu. 1800 IN A 128.148.32.12

;; Query time: 69 msec
;; SERVER: 10.1.1.10#53(10.1.1.10)
;; WHEN: Tue Apr 19 09:03:39 EDT 2022
;; MSG SIZE rcvd: 57
dig . ns

dig +nored www.cs.brown.edu @a.root-servers.net

dig +nored www.cs.brown.edu @a.edu-servers.net

dig +nored www.cs.brown.edu @bru-ns1.brown.edu

www.cs.brown.edu. 86400 IN A 128.148.32.110
Resource Records

• All DNS info represented as resource records (RR)
 name [ttl] [class] type rdata
 – name: domain name
 – TTL: time to live in seconds
 – class: for extensibility, normally IN (1) “Internet”
 – type: type of the record
 – rdata: resource data dependent on the type

• Important RR types
 – A – Internet Address (IPv4); AAAA – IPv6
 – NS – name server;

• Example RRs
 www.cs.brown.edu. 86400 IN A 128.148.32.110
 cs.brown.edu. 86400 IN NS dns.cs.brown.edu.
 cs.brown.edu. 86400 IN NS ns1.ucsb.edu.
Some important details

• How do local servers find root servers?
 – DNS lookup on a.root-servers.net?
 – Servers configured with root cache file
 – Contains root name servers and their addresses

 . 3600000 IN NS A.ROOT-SERVERS.NET.
 A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4

• How do you get addresses of other name servers?
 – To obtain the address of www.cs.brown.edu, ask a.edu-servers.net, says a.root-servers.net
 – How do you find a.edu-servers.net?
 – Glue records: A records in parent zone
Other uses of DNS

• Local multicast DNS
 – Used for service discovery
 – Made popular by Apple
 – This is how you learn of different Apple TVs in the building

• Load balancing

• CDNs
Structure of a DNS Message

- Same format for queries and replies
 - Query has 0 RRs in Answer/Authority/Additional
 - Reply includes question, plus has RRs
- Authority allows for delegation
- Additional for glue, other RRs client might need

```
+---------------------+
| Header              |
+---------------------+
| Question            | the question for the name server
+---------------------+
| Answer              | RRs answering the question
+---------------------+
| Authority           | RRs pointing toward an authority
+---------------------+
| Additional          | RRs holding additional information
+---------------------+
```
Header format

- **Id**: match response to query; **QR**: 0 query/1 response
- **RCODE**: error code.
- **AA**: authoritative answer, **TC**: truncated,
- **RD**: recursion desired, **RA**: recursion available.
Other RR Types

- **CNAME (canonical name):** specifies an alias

  ```
  www.l.google.com. 300 IN A 72.14.204.147
  ```

- **MX record:** specifies servers to handle mail for a domain (the part after the @ in email addr)
 - Different for historical reasons

- **SOA (start of authority)**
 - Information about a DNS zone and the server responsible for the zone

- **PTR (reverse lookup)**

  ```
  7.34.148.128.in-addr.arpa. 86400 IN PTR quanto.cs.brown.edu.
  ```
Reliability

• Answers may contain several alternate servers
• Try alternate servers on timeout
 – Exponential backoff when retrying same server
• Use same identifier for all queries
 – Don’t care which server responds, take first answer
Inserting a Record in DNS

Your new startup helpme.com
Inserting a Record in DNS

• Your new startup helpme.com

• Get a block of addresses from ISP
 – Say 212.44.9.0/24

• Register helpme.com at namecheap.com (for ex.)
 – Provide name and address of your authoritative name server (primary and secondary)
 – Registrar inserts RR pair into the .com TLD server:
 • helpme.com NS dns1.helpme.com
 • dns1.helpme.com A 212.44.9.120

• Configure your authoritative server (dns1.helpme.com)
 – Type A record for www.helpme.com
 – Type MX record for helpme.com
Inserting a Record in DNS, cont

• Need to provide reverse PTR bindings
 – E.g., 212.44.9.120 -> dns1.helpme.com
• Configure your dns server to serve the 9.44.212.in-addr.arpa zone
 – Need to add a record of this NS into the parent zone (44.212.in-addr.arpa)
• Insert the bindings into the 9.44.212.in-addr.arpa zone
DNS Security

- You go to starbucks, how does your browser find www.google.com?
 - Ask local name server, obtained from DHCP

- How can you know you are getting correct data?
DNS: 8.8.8.8
Alternative: 8.8.4.4
Kuşun ötsün!