CSCI-1680 DNS

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti

Administrivia

- TCP Milestone II: Schedule meeting by this Friday, April 21
 - Meeting slots available soon
 - Should by sending/receiving with sliding window—no retransmissions/shutdown/close yet
- TCP Milestone II Gearup: tonight (April 19), 7pm, CIT368 (and also on Zoom)
- HW3: Out soon, short, due next Tuesday

Transport layer: send packets to IP:port, eg. 128.148.10.3 port 80

Is this how users interact with the network? No!

A new abstraction

<u>What we have:</u> *IP Addresses*

- Numerical address appreciated by routers
- Fixed length, binary numbers
- Hierarchical, related to host's location in the network

<u>Want</u>: Host names

- Mnemonics appreciated by humans
- Variable length, string characters
- Provide little (if any) information about location

Examples: 128.148.32.110, 212.58.224.138

Examples: google.com, <u>www.cs.brown.edu</u>, bbc.co.uk

Separating Naming and Addressing

cs.brown.edu => 128.148.32.110

Why?

- Names are easier to remember
- Addresses can change underneath
 - e.g, renumbering when changing providers
- Useful Multiplexing/sharing
 - One name -> multiple addresses
 - Multiple names -> one address

Another Change in Layers...

- Remember ARP
 - ARP: maps IP addresses to MAC addresses

Scalable (Address <-> Name) Mappings

Original way: one file: hosts.txt

- Flat namespace
- Central administrator kept master copy (for the Internet)
- To add a host, emailed admin
- Downloaded file regularly

10-Jun-82 1 Mail-from: Date: 10 Jun From: Dyer Subject: Hos	**************************************	8;000000000 NIC rcvd at	0000 t 10-Jun-82 1747-PDT
ARPA	NET HOST NAMES AN	D LIAISON	10-Jun-82
HOST NAME	HOST ADDRESS	SPONSOR	LIAISON
ACC	10.2.0.54 V	DH ARPA	Lockwood, Gregory (LOCKWOOD@BBNC) Associated Computer Consultants 414 East Cota Street Santa Barbara, California 93101 (805) 965-1023
	PDP-11/70(UNIX) 10.2.0.35 H-316	ARPA	McBride, William T. (MCBRIDE@USC-ISIC) Naval Ocean Systems Center Code 8321 271 Catalina Boulevard San Diego, California 92152 (714) 225-2083 (AV) 933-2083
AEROSPACE	10.2.0.65 VAX-11/780(UNIX)		Nelson, Louis C. (LOU@AEROSPACE) Aerospace Corporation A2/1013 P.O. Box 92957 Los Angeles, California 90009 (213) 615-4424
AFGL	10.1.0.66		Cosentino. Antonio
а. на 2			(COSENTINO@AFSC-HQ) Air Force Geophysics Laboratory SUNA Mail Stop 30 Hanscom Air Force Base, Massachusetts 01731 (617) 861-4161 (AV) 478-4161
	PDP-11/50(RSX11M		
AFGL-TAC	10.2.0.66	AFSC	Cosentino, Antonio (COSENTINO@AFSC-HQ) Air Force Geophysics Laboratory SUNA Mail Stop 30 Hanscom Air Force Base, Massachusetts 01731 (617) 861-4161 (AV) 478-4161
CPUtype:	C/30		

Scalable (Address <-> Name) Mappings

Original way: one file: hosts.txt

- Flat namespace
- Central administrator kept master copy (for the Internet)
- To add a host, emailed admin
- Downloaded file regularly

Is this feasible today? Lol no.

Enter: DNS

Domain Name System (DNS)

- Originally proposed by RFC882, RFC883 (1983)
- Distributed key-value store, before it was cool
- Distributed protocol to translate hostnames -> IP addresses
 - Human-readable names
 - Load-balancing/content delivery
 - So much more...

Goals for DNS

- Scalability
 - Must handle a huge number of records
 - With some software synthesizing names on the fly
 - Must sustain update and lookup load
- Distributed Control
 - Let people control their own names
- Fault Tolerance
 - Minimize lookup failures in face of other network problems

The good news

- Properties that make these goals easier to achieve
 - 1. Read-mostly database
 - Lookups MUCH more frequent than updates
 - 2. Loose consistency
 - When adding a machine, not end of the world if it takes minutes or hours to propagate
- These suggest aggressive caching
 - Once you've lookup up a hostname, remember
 - Don't have to look again in the near future

How it works

Hierarchical namespace broken into zones

cslab1a.cs.brown.edu

How it works

- Hierarchical namespace broken into zones
 - root (.), edu., brown.edu., cs.brown.edu.,
 - Zones separately administered :: delegation
 - Parent zone tells you how to find servers for subdomains
- Each zone served from multiple replicated servers
- Lots and lots of caching

DNS Architecture

- Hierarchy of DNS servers
 - Root servers
 - Top-level domain (TLD) servers
 - Authoritative DNS servers
- Two "types" of DNS servers

DNS Architecture

- Hierarchy of DNS servers
 - Root servers
 - Top-level domain (TLD) servers
 - Authoritative DNS servers
- Two "types" of DNS servers (may overlap)
 - Authoritative servers: "owners" of certain DNS records
 - Resolvers: process lookups, caches authoritative records

Resolver operation

- Apps make recursive queries to local DNS server (1)
 - Ask server to get answer for you
- Server makes iterative queries to remote servers (2,4,6)
 - Ask servers who to ask next
 - Cache results aggressively

DNS Root Server

- Located in New York
- How do we make the root scale?

Verisign, New York, NY

DNS Root Servers

- 13 Root Servers (www.root-servers.org)
 - Labeled A through M (e.g, A.ROOT-SERVERS.NET)
- Does this scale?

DNS Root Servers

- 13 Root Servers (www.root-servers.org)
 - Labeled A through M (e.g, A.ROOT-SERVERS.NET)
- Remember anycast?

DNS Root Servers: Today

From: www.root-servers.org

"Types" of DNS servers

- Top Level Domain (TLD) servers
 - Generic domains (e.g., com, org, edu)
 - Country domains (e.g., uk, br, tv, in, ly)
 - Special domains (e.g., arpa)
 - Corporate domains (...)
- Authoritative DNS servers
 - Provides public records for hosts at an organization
 - Can be maintained locally or by a service provider
- Recursive resolvers
 - Big public servers, or local to a network
 - Lots of caching

DNS Caching

- Recursive queries are expensive
- Caching greatly reduces overhead
 - Top level servers very rarely change
 - Popular sites visited often
 - Local DNS server caches information from many users
- How long do you store a cached response?
 - Original server tells you: TTL entry
 - Server deletes entry after TTL expires

Negative Caching

- Remember things that don't work
 - Misspellings like www.cnn.comm, ww.cnn.com
 - Is the cost of these two queries the same?
- These can take a long time to fail the first time
 - Good to cache negative results so it will fail faster next time
- But negative caching is optional, and not widely implemented

Reverse DNS

How do we get the other direction, IP address to name?

- Addresses have a natural hierarchy:
 - 128.148.32.12
- Idea: reverse the numbers: 12.32.148.128 ...
 - and look that up in DNS
- Under what TLD?
 - Convention: in-addr.arpa
 - Lookup 12.32.148.128.in-addr.arpa
 - in6.arpa for IPv6

DNS Protocol

- TCP/UDP port 53
- Most traffic uses UDP
 - Lightweight protocol has 512 byte message limit
 - Retry using TCP if UDP fails (e.g., reply truncated)
- TCP requires messages boundaries
 - Prefix all messages with 16-bit length
- Bit in query determines if query is recursive


```
% dig cs.brown.edu @10.1.1.10
```

```
; <<>> DiG 9.10.6 <<>> cs.brown.edu @10.1.1.10
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 8536
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1220
;; QUESTION SECTION:
;cs.brown.edu. IN A
;; ANSWER SECTION:
cs.brown.edu. 1800 IN A 128.148.32.12
;; Query time: 69 msec
;; SERVER: 10.1.1.10#53(10.1.1.10)
;; WHEN: Tue Apr 19 09:03:39 EDT 2022
;; MSG SIZE rcvd: 57
```


dig . ns

dig +norec www.cs.brown.edu @a.root-servers.net

dig +norec www.cs.brown.edu @a.edu-servers.net

dig +norec www.cs.brown.edu @bru-ns1.brown.edu

www.cs.brown.edu. 86400 IN A 128.148.32.110

Resource Records

- All DNS info represented as resource records (RR) name [ttl] [class] type rdata
 - name: domain name
 - TTL: time to live in seconds
 - class: for extensibility, normally IN (1) "Internet"
 - type: type of the record
 - rdata: resource data dependent on the type
- Important RR types
 - A Internet Address (IPv4); AAAA IPv6
 - NS name server;

• Example RRs

www.cs.brown.edu.	86400	IN	А	128.148.32.110
cs.brown.edu.	86400	IN	NS	dns.cs.brown.edu.
cs.brown.edu.	86400	ΙN	NS	ns1.ucsb.edu.

Some important details

- How do local servers find root servers?
 - DNS lookup on a.root-servers.net ?
 - Servers configured with root cache file
 - Contains root name servers and their addresses

. 3600000 IN NS A.ROOT-SERVERS.NET. A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4 ...

- How do you get addresses of other name servers?
 - To obtain the address of www.cs.brown.edu, ask a.edu-servers.net, says a.rootservers.net
 - How do you find a.edu-servers.net?
 - Glue records: A records in parent zone

Other uses of DNS

- Local multicast DNS
 - Used for service discovery
 - Made popular by Apple
 - This is how you learn of different Apple TVs in the building
- Load balancing
- CDNs

Structure of a DNS Message

- Same format for queries and replies
 - Query has 0 RRs in Answer/Authority/Additional
 - Reply includes question, plus has RRs
- Authority allows for delegation
- Additional for glue, other RRs client might need

Header format

- Id: match response to query; QR: 0 query/1 response
- RCODE: error code.
- AA: authoritative answer, TC: truncated,
- RD: recursion desired, RA: recursion avai

	1		3					_			1	2		4	1 5
1 I	+++++++++++++										+ 				
++ QR			ode			TC	RD	RA		Z			RCO		
+++++++++++++															
+++++++++++++															
+++++++++++++															
ARCOUNT +++++++++++++															

Other RR Types

- CNAME (canonical name): specifies an alias
- www.google.com.446199 INCNAMEwww.l.google.com.www.l.google.com.300INA72.14.204.147
- MX record: specifies servers to handle mail for a domain (the part after the @ in email addr)
 - Different for historical reasons
- SOA (start of authority)
 - Information about a DNS zone and the server responsible for the zone
- PTR (reverse lookup)
 - 7.34.148.128.in-addr.arpa. 86400 IN PTR quanto.cs.brown.edu.

Reliability

- Answers may contain several alternate servers
- Try alternate servers on timeout
 - Exponential backoff when retrying same server
- Use same identifier for all queries
 - Don't care which server responds, take first answer

Inserting a Record in DNS

Your new startup helpme.com

Inserting a Record in DNS

- Your new startup helpme.com
- Get a block of addresses from ISP
 - Say 212.44.9.0/24
- Register helpme.com at namecheap.com (for ex.)
 - Provide name and address of your authoritative name server (primary and secondary)
 - Registrar inserts RR pair into the .com TLD server:
 - helpme.com NS dns1.helpme.com
 - dns1.helpme.com A 212.44.9.120
- Configure your authoritative server (dns1.helpme.com)
 - Type A record for www.helpme.com
 - Type MX record for helpme.com

Inserting a Record in DNS, cont

- Need to provide reverse PTR bindings
 - E.g., 212.44.9.120 -> dns1.helpme.com
- Configure your dns server to serve the 9.44.212.in-addr.arpa zone
 Need to add a record of this NS into the parent zone (44.212.in-addr.arpa)
- Insert the bindings into the 9.44.212.in-addr.arpa zone

DNS Security

- You go to starbucks, how does your browser find www.google.com?
 - Ask local name server, obtained from DHCP

- ·	operoni (15) bomarn Name	.							
\sim	Option: (6) Domain Name	Server							
	Length: 12								
	Domain Name Server: 1	1.1.1							
	Domain Name Server: 4	.2.2.1							
	Domain Name Server: 8	.8.8.8							

• How can you know you are getting correct data?

