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Administrivia

• Make sure you have signed up for IP grading 

• TCP milestone I:  Thurs, Apr 14 

• TCP gear-up early next week, look for details



Topics for today

• Flow control:  Sliding window 

• Computing RTO 

• Connection termination

É

win 61 RECVIx É

joy
away

TEEN ABC



Sliding window:  in abstract terms

• Window of size w

• Can send at most w packets before 
waiting for an ACK
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Sliding window:  in abstract terms

• Window of size w

• Can send at most w packets before 
waiting for an ACK

• Goal
– Network “pipe” always filled with data

– ACKs come back at rate data is delivered => 
“self-clocking”
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Sender example



Receiver example



Flow Control:   Sender

Invariants 
• LastByteSent – LastByteAcked <= AdvertisedWindow 
• EffectiveWindow = AdvertisedWindow – (BytesInFlight) 
• LastByteWritten – LastByteAcked <= MaxSendBuffer



Flow Control:   Sender

Invariants 
• LastByteSent – LastByteAcked <= AdvertisedWindow 
• EffectiveWindow = AdvertisedWindow – (BytesInFlight) 
• LastByteWritten – LastByteAcked <= MaxSendBuffer

Useful Sliding Window 
Terminology:   

RFC 793, Sec 3.3



Flow control:  receiver

• Can accept data if space in window 

• Available window =  
     BufferSize– ((NextByteExpected-1) - LastByteRead 

• On receiving segment for byte S 
– if s is outside window, ignore packet 
– if s == NextByteExpected: 

• Deliver to application (Update LastByteReceived) 
• If next segment was early arrival, deliver it too 

– If s > NextByteExpected, but within window 
• Queue as early arrival 

• Send ACK for highest contiguous byte received, available window



Flow control:  receiver

• Can accept data if space in window 

• Available window =  
     BufferSize– ((NextByteExpected-1) - LastByteRead 

• On receiving segment for byte S 
– if s is outside window, ignore packet 
– if s == NextByteExpected: 

• Deliver to application (Update LastByteReceived) 
• If next segment was early arrival, deliver it too 

– If s > NextByteExpected, but within window 
• Queue as early arrival 

• Send ACK for highest contiguous byte received, available window

Useful Sliding Window 
Terminology:   

RFC 793, Sec 3.3



Flow Control

• Advertised window can fall to 0 
– How? 

– Sender eventually stops sending, blocks application 

• Resolution:  zero window probing:  sender sends 1-byte 
segments until window comes back > 0
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Some Visualizations

• Normal conditions:  https://www.youtube.com/watch?
v=zY3Sxvj8kZA 

• With packet loss:  https://www.youtube.com/watch?
v=lk27yiITOvU 

https://www.youtube.com/watch?v=zY3Sxvj8kZA
https://www.youtube.com/watch?v=zY3Sxvj8kZA
https://www.youtube.com/watch?v=lk27yiITOvU
https://www.youtube.com/watch?v=lk27yiITOvU


How do ACKs work?

• ACK contains next expected sequence number 

• If one segment is missed but new ones received, send duplicate 
ACK 

• Retransmit when: 
– Receive timeout (RTO) expires 

– Receive 3 Duplicate ACKs 

• How to set RTO?



When to time out?

Should expect an ACK within one Round Trip Time (RTT)

• Problem:  RTT can be highly variable

• Strategy:  expected RTT based on ACKs received
– Use exponentially weighted moving average (EWMA)

– RFC793 version (“smoothed RTT”):

RFC793, Sec 3.7
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When to time out?

Should expect an ACK within one Round Trip Time (RTT)

• Problem:  RTT can be highly variable

• Strategy:  expected RTT based on ACKs received
– Use exponentially weighted moving average (EWMA)

– RFC793 version (“smoothed RTT”):

SRTT = (⍺ * SRTT) + (1 - ⍺)* RTTMeasured 

RTO = min(RTOMin, max(β * SRTT, RTOMax))

⍺ = “Smoothing factor”: .8-.9

β = “Delay variance factor”:   1.3—2.0

RFC793, Sec 3.7
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This is only the beginning…

• Problem 1:  what if segment is a retransmission?
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– Solution:  don’t update RTT if segment was retransmittedp



This is only the beginning…

• Problem 1:  what if segment is a retransmission?
– Solution:  don’t update RTT if segment was retransmitted

• Problem 2: RTT can have high variance
– Initial implementation doesn’t account for this



This is only the beginning…

• Problem 1:  what if segment is a retransmission?
– Solution:  don’t update RTT if segment was retransmitted

• Problem 2: RTT can have high variance
– Initial implementation doesn’t account for this

– Congestion control:  modeling network load



When to Transmit?

Nagle’s algorithm 
• Goal: reduce the overhead of small packets 

if (there is data to send) and (window >= MSS)
Send a MSS segment

else
if there is unAcked data in flight

buffer the new data until ACK arrives
else

send all the new data now
• Receiver should avoid advertising a window <= MSS after advertising a 

window of 0



Delayed Acknowledgments

• Goal: Piggy-back ACKs on data
– Delay ACK for 200ms in case application sends data

– If more data received, immediately ACK second segment

– Note: never delay duplicate ACKs (if missing a segment)



Delayed Acknowledgments

• Goal: Piggy-back ACKs on data
– Delay ACK for 200ms in case application sends data

– If more data received, immediately ACK second segment

– Note: never delay duplicate ACKs (if missing a segment)

• Warning: can interact badly with Nagle for some applications
– Nagle waits for ACK until send => Temporary deadlock

– App can disable Nagle with TCP_NODELAY
– App should also avoid many small writes



Summary:  flow control

• Flow control provides correctness:  reliable, in order delivery 

• Need more for performance 
– What if the network is the bottleneck?   

• Sending too fast will cause queue overflows, heavy packet loss 

• Need more for performance: congestion control



Connection Termination

• When you have no more data to 
send, send a FIN
– Sent by close() or shutdown()

• Both sides close connection 
separately!

FIN

ACK

FIN

ACK

Close

Close

FIN_WAIT_1

CLOSE_WAIT

FIN_WAIT_2

LAST_ACK
TIME_WAIT

CLOSED

CLOSED

…

2M
SL



Connection Termination

• When you have no more data to 
send, send a FIN
– Sent by close() or shutdown()

• Both sides close connection 
separately!

• TIME_WAIT:  initiating side should 
wait for 2*MSL before deleting TCB
– MSL = Longest time a segment might 

be delayed (configurable, ~1min)

FIN

ACK

FIN

ACK

Close

Close

FIN_WAIT_1

CLOSE_WAIT

FIN_WAIT_2

LAST_ACK
TIME_WAIT

CLOSED

CLOSED

…

2M
SL



TCP State Diagram



AIMD Implementation

• In practice, send MSS-sized segments 
– Let window size in bytes be w (a multiple of MSS) 

• Increase: 
– After w bytes ACKed, could set w = w + MSS 
– Smoother to increment on each ACK 

• w = w + MSS/(# acks/w) = w  + MSS/(w/MSS) 
        = w + MSS2/w 

• Decrease: 
– After a packet loss, w = w/2 
– But don’t want w < MSS 
– So react differently to multiple consecutive losses 
– Back off exponentially (pause with no packets in flight)


