
CSCI-1680
Transport Layer II

Data over TCP: Flow Control

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazières, Phil Levis, John Jannotti

Administrivia

• Make sure you have signed up for IP grading

• TCP milestone I: Thurs, Apr 14

• TCP gear-up early next week, look for details

Topics for today

• Flow control: Sliding window

• Computing RTO

• Connection termination

É

win 61 RECVIx É

joy
away

TEEN ABC

Sliding window: in abstract terms

• Window of size w

• Can send at most w packets before
waiting for an ACK

It

Sliding window: in abstract terms

• Window of size w

• Can send at most w packets before
waiting for an ACK

• Goal
– Network “pipe” always filled with data

– ACKs come back at rate data is delivered =>
“self-clocking”

NETWORK
CONDITIONS1111inspusxeE

SENDEN 4
SEND ADDS DATA
to BUFFER

Matt
ME Last BYTESENT NEXT SEGNVM

LAST BYTE ACK'D BY RECEIVER

Byte tÉi Y with prontizes

BY RECEIVER
ON ALK FOR A

IF LDA4 LBS OUT OF WINDOW
DROP SINCE

OLD INVALID
OTHERWISE

LBA SIZE OF SEGMENT

IF ACK FULLY COVERS A
AN UNACKED SEGMENT CAN
DEQUEVE

LAST BYTE ACKED A LAST BYTENM
Me

1 1 14144 so

T AT NEXT TO SEND
RECEIVER ADVENTES HOW MUCH

DATA IT CAN ACCEPT CABVENTIZED

WINDOW SW
SEND SEGMENTS TO FILL UP TO AW

FOR EACH ONE RECORD

TIMESTAMP FOR RETRANSMIT

IN FLIGHT 433,9 LBA O

NBS 5

EACH SEGMENT SHOULD BE IDEALLY
MSS BYTES GOOO BYTES

IF YOU GET ACK FOR SEQ A

RECEIVER HAS DATA UP TO

SEG A CUMULATIVEACES
LBA A
CAN NOW SEND MOREDITTON

INIBYE t.my IIR 13,177

IF YOU GET ACK 12
a 12,13 14,45

F 10 BYTE SEGMENTS

LBA 10 We 40 BYTES

IF ACK FOR 21
RHAS DATA UP TO 20

SEGMENTS IN FLIGHT 20,310,403

50
IF ACK FOR 15
MIGHTNEED TO RETRANSMIT
PART OF SEGMENT

FOR EACH SEGMENT IN FLIGHT
TIMESTAMP OF LAST SENT TIME
RETRANSMIN IF THIS EXPIRES

1
BYTES READY FORApp

AT
APP CALLING

WINDOWis room
window IN JAE
T A

TESTBYTEREAD
BYAPP

EARLY
ÉÉEEyy

ARRIVALS NEXTSEQNUN THAT YOU

OUT OFORDN EXPECT
PACKETS

tamannaah
WHAT YOU SEND BACK TO SENDER
TO INDICATE HOW MUCH IT CAN
SEND
CAN BE O

S R

FOR LAST
BYTE YOU

i
IE

T

NEXTBYTE
EXPECTED

NEXT BYTE EXPECTED
NEXT SEG NVM YOU EXPAT
TO GET

RANGE OF STEINE Numbers

NEXT NEXT SEG AVAIL WINDOW

IF YOU GET SEG W SEES

IF S Z NBE AND SLADE AVAIL
WINDOW

ADD TO BUFFON AT
POSITION S

NDE ti SEGMENT SIZE

CHECK EARLY ARRIVAL
QUEUE MOVE UP TO NET
CONTIGUOUS BLOCK

Sender example

Receiver example

Flow Control: Sender

Invariants
• LastByteSent – LastByteAcked <= AdvertisedWindow
• EffectiveWindow = AdvertisedWindow – (BytesInFlight)
• LastByteWritten – LastByteAcked <= MaxSendBuffer

Flow Control: Sender

Invariants
• LastByteSent – LastByteAcked <= AdvertisedWindow
• EffectiveWindow = AdvertisedWindow – (BytesInFlight)
• LastByteWritten – LastByteAcked <= MaxSendBuffer

Useful Sliding Window
Terminology:

RFC 793, Sec 3.3

Flow control: receiver

• Can accept data if space in window

• Available window =
 BufferSize– ((NextByteExpected-1) - LastByteRead

• On receiving segment for byte S
– if s is outside window, ignore packet
– if s == NextByteExpected:

• Deliver to application (Update LastByteReceived)
• If next segment was early arrival, deliver it too

– If s > NextByteExpected, but within window
• Queue as early arrival

• Send ACK for highest contiguous byte received, available window

Flow control: receiver

• Can accept data if space in window

• Available window =
 BufferSize– ((NextByteExpected-1) - LastByteRead

• On receiving segment for byte S
– if s is outside window, ignore packet
– if s == NextByteExpected:

• Deliver to application (Update LastByteReceived)
• If next segment was early arrival, deliver it too

– If s > NextByteExpected, but within window
• Queue as early arrival

• Send ACK for highest contiguous byte received, available window

Useful Sliding Window
Terminology:

RFC 793, Sec 3.3

Flow Control

• Advertised window can fall to 0
– How?

– Sender eventually stops sending, blocks application

• Resolution: zero window probing: sender sends 1-byte
segments until window comes back > 0

Unfilled buffer

Data received,but not acknowledged

Data receive
d, acknowledged

and delive
red to applica

tion

Sequence numbers
(Circumference = 0 to 2^32 slots)

Data received, acknowledged,
but not yet delivered to application

Initial
sequence
number

Receiver's window
(Allocation buffer)
Up to 2^16-1 slots

Window
shifts

rw
nd advertisem

ent

ME

MEEE

Some Visualizations

• Normal conditions: https://www.youtube.com/watch?
v=zY3Sxvj8kZA

• With packet loss: https://www.youtube.com/watch?
v=lk27yiITOvU

https://www.youtube.com/watch?v=zY3Sxvj8kZA
https://www.youtube.com/watch?v=zY3Sxvj8kZA
https://www.youtube.com/watch?v=lk27yiITOvU
https://www.youtube.com/watch?v=lk27yiITOvU

How do ACKs work?

• ACK contains next expected sequence number

• If one segment is missed but new ones received, send duplicate
ACK

• Retransmit when:
– Receive timeout (RTO) expires

– Receive 3 Duplicate ACKs

• How to set RTO?

When to time out?

Should expect an ACK within one Round Trip Time (RTT)

• Problem: RTT can be highly variable

• Strategy: expected RTT based on ACKs received
– Use exponentially weighted moving average (EWMA)

– RFC793 version (“smoothed RTT”):

RFC793, Sec 3.7

l

When to time out?

Should expect an ACK within one Round Trip Time (RTT)

• Problem: RTT can be highly variable

• Strategy: expected RTT based on ACKs received
– Use exponentially weighted moving average (EWMA)

– RFC793 version (“smoothed RTT”):

SRTT = (⍺ * SRTT) + (1 - ⍺)* RTTMeasured

RTO = min(RTOMin, max(β * SRTT, RTOMax))

⍺ = “Smoothing factor”: .8-.9

β = “Delay variance factor”: 1.3—2.0

RFC793, Sec 3.7

y
NEWMEASUREDVALUE

8s Jinx
HOW MUCH NEWSAMPLE

AFFECTS
AVG

This is only the beginning…

• Problem 1: what if segment is a retransmission?

This is only the beginning…

• Problem 1: what if segment is a retransmission?
– Solution: don’t update RTT if segment was retransmittedp

This is only the beginning…

• Problem 1: what if segment is a retransmission?
– Solution: don’t update RTT if segment was retransmitted

• Problem 2: RTT can have high variance
– Initial implementation doesn’t account for this

This is only the beginning…

• Problem 1: what if segment is a retransmission?
– Solution: don’t update RTT if segment was retransmitted

• Problem 2: RTT can have high variance
– Initial implementation doesn’t account for this

– Congestion control: modeling network load

When to Transmit?

Nagle’s algorithm
• Goal: reduce the overhead of small packets

if (there is data to send) and (window >= MSS)
Send a MSS segment

else
if there is unAcked data in flight

buffer the new data until ACK arrives
else

send all the new data now
• Receiver should avoid advertising a window <= MSS after advertising a

window of 0

Delayed Acknowledgments

• Goal: Piggy-back ACKs on data
– Delay ACK for 200ms in case application sends data

– If more data received, immediately ACK second segment

– Note: never delay duplicate ACKs (if missing a segment)

Delayed Acknowledgments

• Goal: Piggy-back ACKs on data
– Delay ACK for 200ms in case application sends data

– If more data received, immediately ACK second segment

– Note: never delay duplicate ACKs (if missing a segment)

• Warning: can interact badly with Nagle for some applications
– Nagle waits for ACK until send => Temporary deadlock

– App can disable Nagle with TCP_NODELAY
– App should also avoid many small writes

Summary: flow control

• Flow control provides correctness: reliable, in order delivery

• Need more for performance
– What if the network is the bottleneck?

• Sending too fast will cause queue overflows, heavy packet loss

• Need more for performance: congestion control

Connection Termination

• When you have no more data to
send, send a FIN
– Sent by close() or shutdown()

• Both sides close connection
separately!

FIN

ACK

FIN

ACK

Close

Close

FIN_WAIT_1

CLOSE_WAIT

FIN_WAIT_2

LAST_ACK
TIME_WAIT

CLOSED

CLOSED

…

2M
SL

Connection Termination

• When you have no more data to
send, send a FIN
– Sent by close() or shutdown()

• Both sides close connection
separately!

• TIME_WAIT: initiating side should
wait for 2*MSL before deleting TCB
– MSL = Longest time a segment might

be delayed (configurable, ~1min)

FIN

ACK

FIN

ACK

Close

Close

FIN_WAIT_1

CLOSE_WAIT

FIN_WAIT_2

LAST_ACK
TIME_WAIT

CLOSED

CLOSED

…

2M
SL

TCP State Diagram

AIMD Implementation

• In practice, send MSS-sized segments
– Let window size in bytes be w (a multiple of MSS)

• Increase:
– After w bytes ACKed, could set w = w + MSS
– Smoother to increment on each ACK

• w = w + MSS/(# acks/w) = w + MSS/(w/MSS)
 = w + MSS2/w

• Decrease:
– After a packet loss, w = w/2
– But don’t want w < MSS
– So react differently to multiple consecutive losses
– Back off exponentially (pause with no packets in flight)

