CSCI-1680
Transport.Layer.ll

Data over TCP: Flow Control

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazieres, Phil Levis, John Jannotti

Administrivia

« Make sure you have signed up for IP grading
« TCP milestone I: Thurs, Apr 14

« TCP gear-up early next week, look for details

Topics for today

« Flow control: Sliding window
« Computing RTO

« Connection termination

V.

(ABc] PeF—

Sliding window: in abstract terms ¢

« Window of size w)
 Can send at most w packets before %
— 3

waiting for an ACK

Sliding window: in abstract terms s AT

U
$ / Ak £

« Window of size w) g
 Can send at most w packets before (W @

waiting for an ACK
« Goal

— Network “pipe” always filled with data %

— ACKs come back at rate data is delivered => K

“self-clocking” (,9 f&”fﬁl/pj o) %
— ’ ﬁﬂlﬁc
— s CoP!

G
_ Pt/ AP VOAGE: 4/@/

S[_Wptﬂ/ gmo A0S DATA
v A

@W&W :

Z;UT pyie C8 > o (kG (A
pacr BYE acklp BY Bseavd—
b OLDEST Sk JVA [FLGAT
) Byrs (v //L/UM’ £ om0 ApvshTized

By Eeckive-
ol A por A

/F Lﬁ/f% LBS = ouy or Loty
beep, Siwee
Orp) /,umwp

L

LBA v (3126 OF [temiwr)

/[Ak Fow) poUsc |
AN QK ED SECAT, G
Dt ULVE.

f{ APP

&/Vé’ﬂ’ 70 Crwb
— PEk AvendtE W pucs
A)7 i AcespT (Aprerize
wwpow, de>
- S Stgmmyt 1o Bl P 1O 4W)
— Fop gAcH ovL Lo
TIMECTAMY Pon PETZANA)T

N Rl = 239 LRI 7O
- NI = S

AN Legavr SonD BE [PEAcL)
Mss BYTER 2 (3000 W/’zﬂ)

JF o 8tr Ak For- 4 A

— LeizEwer WA DUTH pp 7O
(g A comanve o)

~ . L7 T041)
_ %% Aﬁu) Sewd Srres pavd

N/ EBYTE Jvph _
(Bl o w0 @zz, 1301]

IF Yo et At)2
W= [12,53, 14, 15

(P10 BYTE (pehenTs
LA Z (0 w= 70 DYTES

JF Ack o 2/
— L NAS DATA (7 70 &

Stomet 0 FLGNT % 22,30, 10(
<0
JF ALk o 1S
MISNT NesD 70 prindismir
Py P CEopnT

Fon- EAL SEpAT Ju - Frisd7s
— JMESTHMP oF LAT CEMT TIAL
= RBETRACINY JF T ERAASE

gyt Resof Tob APp

wm/ " AP e
AyUE ' :
. prf) M JW/? S |
/ r Toa Rvre LA
L
LJA %“/ﬁ LS ’%/ZCfLD
Wi 227

AL AVDTIEED _ Ly)pDOs

AT To0 Stvd plck 10 SEPDBL

70 JNDICATE
L Now Mues) (v cAl
~ ANV RE O

= oo A
Fop LAST

JYIE y
OLT |V o)A

(WetT oYIE
[y PECTED)

Nesy BYTE mppseTsy) =
Akdr St PN M0 el

79 et
//,4{,/0

V
D6t oF (EjUaceE founpic

[Ty MR e A AVAVL w//u@ou)>

JF v GET SB6) e L

P S = MBE ANP SEMBE s gL

Ly MO
— Ap 70 pvFPY— {1
Fosiriw S
_ BE +° SEEMAUT S)2L

— CAECK L) Al
Que, MVE |p [0 T
COVTI6 WS PBrotk.-

Sender example

Receiver example

Flow Control: Sender

Sending application

Invariants

LastByteSent — LastByteAcked <= AdvertisedWindow
EffectiveWindow = AdvertisedWindow — (BytesInFlight)
LastByteWritten — LastByteAcked <= MaxSendBuffer

Flow Control:

Sender

Sending application

Invariants

+ LastByteSent — LastByteAcked <= AdvertisedWindow

+ EffectiveWindow = AdvertisedWindow — (BytesInFlight)
+ LastByteWritten — LastByteAcked <= MaxSendBuffer

LastByteSent

Useful Sliding Window
Terminology:
RFC 793, Sec 3.3

Flow control: receiver

« Can accept data if space in window

« Available window =
BufferSize— ((NextByteExpected-1) - LastByteRead

Receiving application

« On receiving segment for byte S LastByteRead
— if s is outside window, ignore packet

— if s == NextByteExpected:

NextByteExpected LastByteRcvd

+ Deliver to application (Update LastByteReceived)

« If next segment was early arrival, deliver it too b

— If s > NextByteExpected, but within window

« Queue as early arrival

« Send ACK for highest contiguous byte received, available window

Flow control: receiver Useful Sliding Window

Terminology:
RFC 793, Sec 3.3

« Can accept data if space in window

« Available window =
BufferSize— ((NextByteExpected-1) - LastByteRead

Receiving application

« On receiving segment for byte S LastByteRead
— if s is outside window, ignore packet

— if s == NextByteExpected:

NextByteExpected LastByteRcvd

+ Deliver to application (Update LastByteReceived)

« If next segment was early arrival, deliver it too b

— If s > NextByteExpected, but within window

« Queue as early arrival

« Send ACK for highest contiguous byte received, available window

Flow Control

o Advertised window can fall to O
— How?

— Sender eventually stops sending, blocks application

* Resolution: zero window probing: sender sends 1-byte
segments until window comes back > 0

Initial
sequence

Sequence numbers
(Circumference = 0 to 232 slots)

Data received, acknowfedged,
but not yet delivered t@fapplication

Window
shifts

Some Visualizations

* Normal conditions: https://www.youtube.com/watch?
v=zY3Sxv|8kZA

» With packet loss: https://www.youtube.com/watch?
v=1k27yilTOvVU

https://www.youtube.com/watch?v=zY3Sxvj8kZA
https://www.youtube.com/watch?v=zY3Sxvj8kZA
https://www.youtube.com/watch?v=lk27yiITOvU
https://www.youtube.com/watch?v=lk27yiITOvU

How do ACKs work?

ACK contains next expected sequence number

If one segment is missed but new ones received, send duplicate
ACK

Retransmit when:
— Receive timeout (RTO) expires
— Receive 3 Duplicate ACKs

How to set RTO?

When to time out?

{ RFC793, Sec 3.7
Should expect an ACK within one Round Trip Time (RTT)

» Problem: RTT can be highly variable

« Strategy: expected RTT based on ACKs received

— Use exponentially weighted moving average (EWMA)
— RFC793 version (“smoothed RTT"):

When to time out?

{ RFC793, Sec 3.7
Should expect an ACK within one Round Trip Time (RTT)

» Problem: RTT can be highly variable

« Strategy: expected RTT based on ACKs received

— Use exponentially weighted moving average (EWMA) X% /(,L:}U_gao
— RFC793 version (“smoothed RTT"): / / VA LVE

SRTT = (& * SRTT) + (1 -)* RTT,,____
TO)= gA(RTO,, , pax(B * SRTT, RTO,,)
/At MW

a = “Smoothing factor”: .8-.9 f—— Aoy MNcY W fﬁﬂ?&f AFFZECZ:{
B = “Delay variance factor”: 1.3—2.0 A \/41/6

This is only the beginning...

« Problem 1: what if segment is a retransmission?

This is only the beginning...

v « Problem 1: what if segment is a retransmission?

— Solution: don’t update RTT if segment was retransmitted

This is only the beginning...

« Problem 1: what if segment is a retransmission?

— Solution: don’t update RTT if segment was retransmitted

* Problem 2: RTT can have high variance

— Initial implementation doesn’t account for this

This is only the beginning...

« Problem 1: what if segment is a retransmission?

— Solution: don’t update RTT if segment was retransmitted

« Problem 2: RTT can have high variance
— Initial implementation doesn’t account for this

— Congestion control: modeling network load

When to Transmit?

Nagle’s algorithm

« Goal: reduce the overhead of small packets
if (there is data to send) and (window >= MSS)
Send a MSS segment
else
if there is unAcked data in flight
buffer the new data until ACK arrives
else
send all the new data now

+ Receiver should avoid advertising a window <= MSS after advertising a
window of O

Delayed Acknowledgments

« Goal: Piggy-back ACKs on data
— Delay ACK for 200ms in case application sends data

— If more data received, immediately ACK second segment

— Note: never delay duplicate ACKs (if missing a segment)

Delayed Acknowledgments

« Goal: Piggy-back ACKs on data
— Delay ACK for 200ms in case application sends data
— If more data received, immediately ACK second segment

— Note: never delay duplicate ACKs (if missing a segment)

« Warning: can interact badly with Nagle for some applications
— Nagle waits for ACK until send => Temporary deadlock
— App can disable Nagle with TCP_ NODELAY

— App should also avoid many small writes

Summary: flow control

Flow control provides correctness: reliable, in order delivery

Need more for performance
— What if the network is the bottleneck?

Sending too fast will cause queue overflows, heavy packet loss

Need more for performance: congestion control

Connection Termination

« When you have no more data to
send, send a FIN

— Sent by close () or shutdown ()

« Both sides close connection
separately!

Close
FIN WAIT 1

FIN WAIT 2

TIME WAIT

2MSL

CLOSED

Fin

ACK CLOSE_WAIT

Close

< o
ACk CLOSED

Connection Termination

« When you have no more data to
send, send a FIN

— Sent by close () or shutdown ()

« Both sides close connection
separately!

« TIME WAIT: initiating side should
wait for 2*MSL before deleting TCB

— MSL = Longest time a segment might
be delayed (configurable, ~1min)

Close e
FIN WAIT 1 IN

ACK CLOSE_WAIT

FIN WAIT 2
Close

PN LAST ACK
TIME_WAIT
ACk CLOSED

CLOSED

2MSL

TCP State Diagram

CONNECT/SYN (Step 1 of the 3-way-handshake)

eesneeseenoe e UNUSUAl event
= chentreceiver path (Star) _<

— gECVEr/sender path LISTEN/- l CLOSE-

A
CLOSE/

Step 2 of the 3-way-handshake) SYN/SYN+ACK @

A

RST/- : SEND/SYN

SYN/SYN+ACK

Data exchange occurs

SYN+ACK/ACK
‘Step 3 of the 3-way-handshake)

CLOSE/FIN
CLOSE/FIN FIN/JACK

l Active CLOSEE |Passive CLOSE}
B CLOSING CLOSE WAIT

CLOSE/FIN

FINJACK

FIN WAIT 1 .

FIN+ACK/ACK
ACKI- :

_— >

FINJACK

Y

|
|
I
|
I
|
I
I
I
|
|
I
I
|
|
I
I
|
I
I

Timeout

AIMD Implementation

* In practice, send MSS-sized segments
— Let window size in bytes be w (a multiple of MSS)

* Increase:

— After w bytes ACKed, could set w = w + MSS

— Smoother to increment on each ACK

« w=w + MSS/(# acks/w) = w + MSS/(w/MSS)
= w + MSS2/w

* Decrease:

— After a packet loss, w = w/2

— But don't want w < MSS

— So react differently to multiple consecutive losses

— Back off exponentially (pause with no packets in flight)

