
CSCI-1680
Transport Layer II

Data over TCP:  Flow Control

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazières, Phil Levis, John Jannotti



Administrivia

• Sign up for IP grading:  this week and next week
• TCP assignment: out now—start early!
– Gear-up session soon, details forthcoming
– The next few lectures will help you
– Schedule Milestone I meeting by Thurs, April 14

• More details soon on what happens after TCP



Topics for today

From before break
• TCP: connection setup
• Sockets

New stuff:  How to send data
• Flow control: how to send data without overwhelming receiver
• Congestion control: how to send data without overwhelming 

network



TCP – Transmission Control Protocol

TCP provides a “reliable, connection oriented, full duplex ordered 
byte stream”

Application process

Write
bytes

TCP

Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP

Receive buffer

…

… …



TCP Header
0                   1                   2                   3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|          Source Port          |       Destination Port        |  

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                        Sequence Number                        |  

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                    Acknowledgment Number                      |  

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|  Data |           |U|A|P|R|S|F|                               |  
| Offset| Reserved  |R|C|S|S|Y|I|            Window             |  

|       |           |G|K|H|T|N|N|                               |  
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|           Checksum            |         Urgent Pointer        |  

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                    Options                    |    Padding    |  

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                             data                              |  

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



Most important header fields

• Ports: multiplexing
• Sequence number
– Correspond to bytes, not packets!

• Acknowledgment Number
– Next expected sequence number

• Window: willing to receive
– Lets receiver limit SWS (even to 0) for flow control

• Checksum: a (really weak) checksum, see RFC



Header Flags

• URG: whether there is urgent data 
• ACK: ack no. valid (all but first segment)
• PSH: push data to the application immediately
• RST: reset connection
• SYN: synchronize, establishes connection
• FIN: close connection



TCP State Diagram
CLOSED(Start)

LISTEN/-
CLOSE/-

LISTEN

SYN
RECEIVED

SYN
SENT

CONNECT/ (Step 1 of the 3-way-handshake)SYN

SYN/SYN+ACK(Step 2 of the 3-way-handshake)

unusual event
client/receiver path
server/sender path

RST/-

SYN/SYN+ACK (simultaneous open)

SYN+ACK/ACK
(Step 3 of the 3-way-handshake)

Data exchange occurs

ESTABLISHED

FIN/ACK

ACK/-

CLOSE/-

SEND/SYN

CLOSE/FIN

CLOSE/FIN

CLOSING

TIME WAIT

CLOSED

FIN WAIT 1

FIN WAIT 2

CLOSE WAIT

LAST ACK

CLOSE/FIN

FIN/ACK

FIN+ACK/ACK

ACK/-

FIN/ACK

Timeout

(Go back to start)

Active CLOSE Passive CLOSE

ACK/-

ACK/-



Establishing a Connection

• Three-way handshake
– Two sides agree on respective initial sequence nums

• If no one is listening on port: server may send RST
• If server is overloaded: ignore SYN
• If no SYN-ACK: retry, timeout

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

listen(),
accept()

accept()
returns

connect()



Sequence numbers

How to pick the initial sequence number?
• Protocols based on relative sequence numbers based on starting 

value
• But why not start at 0?

• Instead, pick an arbitrary number



Keeping state:  the TCB

State for a TCP connection kept in Transmission Control Buffer 
(TCB)
• Keeps initial sequence numbers, connection state, send/recv

buffers, status of unACK’d segments, …
• When to allocate?
– Client:  Initiating a connection (sending a SYN)
– Server: accepting a new connection (receiving SYN
– Listening on a socket*



RFC 793, 
Sec 2.4



• Each connection has an associated TCB in the kernel
• For each packet kernel maps the 5-tuple

(tcp/udp, src IP, src port, dst IP, dst port) to a socket

deemer@vesta ~ % netstat -anl
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state) 
tcp4 0 0 172.17.48.121.56915 192.168.1.58.7000 SYN_SENT
tcp4 0 0 172.17.48.121.56908 142.250.80.35.443 ESTABLISHED
tcp4 0 0 172.17.48.121.56887 13.225.231.50.80 ESTABLISHED

. . .
tcp4 0 0 *.22 *.* LISTEN



SYN flooding

• What happens if you send a someone huge number of SYN 
packets?



A hacky solution:  SYN cookies

• Don’t allocate TCB on first SYN
• Encode some state inside the initial

sequence number that goes back to 
the client (in the SYN+ACK)

• What gets encoded?
– Coarse timestamp
– Hash of connection IP/port
– Other stuff (implementation dependent)

• Better ideas?

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1



Sending data

We should not send more data than the receiver can take: flow 
control
• When to send data?
– Sender can delay sends to get larger segments

• How much data to send?
– Data is sent in MSS-sized segments

• MSS = Maximum Segment Size (TCP packet that can fit in an IP packet)
• Chosen to avoid fragmentation



Simplest method: Stop and Wait

Consider sending one packet at a time
– S: Send packet, wait
– R: Receive packet, send ACK
– S: Receive ACK, send next packet 

OR
No ACK within some time (RTO), timeout and retransmit



What can go wrong?

An Introduction to Computer Networks, Release 2.0.6

Sender SenderReceiver Receiver

Timeout

Lost Data Lost ACK

Data[N]

Data[N]

ACK[N]

Data[N]

ACK[N]

Timeout Data[N]

ACK[N]

The right half of the diagram, by comparison, illustrates the case of a lost ACK. The receiver has received
a duplicate Data[N]. We have assumed here that the receiver has implemented a retransmit-on-duplicate
strategy, and so its response upon receipt of the duplicate Data[N] is to retransmit ACK[N].

As a final example, note that it is possible for ACK[N] to have been delayed (or, similarly, for the first
Data[N] to have been delayed) longer than the timeout interval. Not every packet that times out is actually
lost!

Sender Receiver

Timeout

Late ACK

Data[N]

Data[N]
ACK[N]

ACK[N]

Data[N+1]

Expecting
ACK[N+1]

In this case we see that, after sending Data[N], receiving a delayed ACK[N] (rather than the expected
ACK[N+1]) must be considered a normal event.

In principle, either side can implement retransmit-on-timeout if nothing is received. Either side can also
implement retransmit-on-duplicate; this was done by the receiver in the second example above but not by
the sender in the third example (the sender received a second ACK[N] but did not retransmit Data[N+1]).

8.1 Building Reliable Transport: Stop-and-Wait 175

An Introduction to Computer Networks, Release 2.0.6

Sender SenderReceiver Receiver

Timeout

Lost Data Lost ACK

Data[N]

Data[N]

ACK[N]

Data[N]

ACK[N]

Timeout Data[N]

ACK[N]

The right half of the diagram, by comparison, illustrates the case of a lost ACK. The receiver has received
a duplicate Data[N]. We have assumed here that the receiver has implemented a retransmit-on-duplicate
strategy, and so its response upon receipt of the duplicate Data[N] is to retransmit ACK[N].

As a final example, note that it is possible for ACK[N] to have been delayed (or, similarly, for the first
Data[N] to have been delayed) longer than the timeout interval. Not every packet that times out is actually
lost!

Sender Receiver

Timeout

Late ACK

Data[N]

Data[N]
ACK[N]

ACK[N]

Data[N+1]

Expecting
ACK[N+1]

In this case we see that, after sending Data[N], receiving a delayed ACK[N] (rather than the expected
ACK[N+1]) must be considered a normal event.

In principle, either side can implement retransmit-on-timeout if nothing is received. Either side can also
implement retransmit-on-duplicate; this was done by the receiver in the second example above but not by
the sender in the third example (the sender received a second ACK[N] but did not retransmit Data[N+1]).

8.1 Building Reliable Transport: Stop-and-Wait 175

An Introduction to Computer Networks, Release 2.0.6

Sender SenderReceiver Receiver

Timeout

Lost Data Lost ACK

Data[N]

Data[N]

ACK[N]

Data[N]

ACK[N]

Timeout Data[N]

ACK[N]

The right half of the diagram, by comparison, illustrates the case of a lost ACK. The receiver has received
a duplicate Data[N]. We have assumed here that the receiver has implemented a retransmit-on-duplicate
strategy, and so its response upon receipt of the duplicate Data[N] is to retransmit ACK[N].

As a final example, note that it is possible for ACK[N] to have been delayed (or, similarly, for the first
Data[N] to have been delayed) longer than the timeout interval. Not every packet that times out is actually
lost!

Sender Receiver

Timeout

Late ACK

Data[N]

Data[N]
ACK[N]

ACK[N]

Data[N+1]

Expecting
ACK[N+1]

In this case we see that, after sending Data[N], receiving a delayed ACK[N] (rather than the expected
ACK[N+1]) must be considered a normal event.

In principle, either side can implement retransmit-on-timeout if nothing is received. Either side can also
implement retransmit-on-duplicate; this was done by the receiver in the second example above but not by
the sender in the third example (the sender received a second ACK[N] but did not retransmit Data[N+1]).

8.1 Building Reliable Transport: Stop-and-Wait 175



Sequence number example

An Introduction to Computer Networks, Release 2.0.6

A sends B sends
1 SYN, seq=0
2 SYN+ACK, seq=0, ack=1 (expecting)
3 ACK, seq=1, ack=1 (ACK of SYN)
4 “abc”, seq=1, ack=1
5 ACK, seq=1, ack=4
6 “defg”, seq=4, ack=1
7 seq=1, ack=8
8 “foobar”, seq=8, ack=1
9 seq=1, ack=14, “hello”
10 seq=14, ack=6, “goodbye”
11,12 seq=21, ack=6, FIN seq=6, ack=21 ;; ACK of “goodbye”, crossing packets
13 seq=6, ack=22 ;; ACK of FIN
14 seq=6, ack=22, FIN
15 seq=22, ack=7 ;; ACK of FIN

(We will see below that this table is slightly idealized, in that real sequence numbers do not start at 0.)

Here is the ladder diagram corresponding to this connection:

A B

SYN

SYN+ACK

ACK
“abc”

ACK
“defg”

ACK
“foobar”

“hello”
“goodbye”

FIN

ACK
FIN

ACK

ACK Crossing packets

In terms of the sequence and acknowledgment numbers, SYNs count as 1 byte, as do FINs. Thus, the SYN
counts as sequence number 0, and the first byte of data (the “a” of “abc”) counts as sequence number 1.
Similarly, the ack=21 sent by the B side is the acknowledgment of “goodbye”, while the ack=22 is the

388 17 TCP Transport Basics

An Introduction to Computer Networks, Release 2.0.6

A sends B sends
1 SYN, seq=0
2 SYN+ACK, seq=0, ack=1 (expecting)
3 ACK, seq=1, ack=1 (ACK of SYN)
4 “abc”, seq=1, ack=1
5 ACK, seq=1, ack=4
6 “defg”, seq=4, ack=1
7 seq=1, ack=8
8 “foobar”, seq=8, ack=1
9 seq=1, ack=14, “hello”
10 seq=14, ack=6, “goodbye”
11,12 seq=21, ack=6, FIN seq=6, ack=21 ;; ACK of “goodbye”, crossing packets
13 seq=6, ack=22 ;; ACK of FIN
14 seq=6, ack=22, FIN
15 seq=22, ack=7 ;; ACK of FIN

(We will see below that this table is slightly idealized, in that real sequence numbers do not start at 0.)

Here is the ladder diagram corresponding to this connection:

A B

SYN

SYN+ACK

ACK
“abc”

ACK
“defg”

ACK
“foobar”

“hello”
“goodbye”

FIN

ACK
FIN

ACK

ACK Crossing packets

In terms of the sequence and acknowledgment numbers, SYNs count as 1 byte, as do FINs. Thus, the SYN
counts as sequence number 0, and the first byte of data (the “a” of “abc”) counts as sequence number 1.
Similarly, the ack=21 sent by the B side is the acknowledgment of “goodbye”, while the ack=22 is the

388 17 TCP Transport Basics



Better Flow Control:  Sliding window

• Part of TCP specification (even before 1988)
• Send multiple packets at once, based on a window
• Receiver uses window header field to tell sender how much space 

it has



Flow Control:   Sender

Invariants
• LastByteSent – LastByteAcked <= AdvertisedWindow
• EffectiveWindow = AdvertisedWindow – (BytesInFlight)
• LastByteWritten – LastByteAcked <= MaxSendBuffer

Sending application

LastByteWritten
TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead
TCP

LastByteRcvdNextByteExpected

(a) (b)

Useful Sliding Window 
Terminology:  

RFC 793, Sec 3.3



Flow control:  receiver

AdvertisedWindow
= MaxRcvBuffer – ((NextByteExpected-1) - LastByteRead)

Sending application

LastByteWritten
TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead
TCP

LastByteRcvdNextByteExpected

(a) (b)

Useful Sliding Window 
Terminology:  

RFC 793, Sec 3.3



Flow Control

• Advertised window can fall to 0
– How?
– Sender eventually stops sending, blocks application

• Sender keeps sending 1-byte segments until window comes back 
> 0

Sending application

LastByteWritten
TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead
TCP

LastByteRcvdNextByteExpected

(a) (b)



Unfilled buffer

Data received,but not acknowledged

Data re
ceive

d, a
ckn

owledged

and delive
red to

 applica
tion

Sequence numbers
(Circumference = 0 to 2^32 slots)

Data received, acknowledged,
but not yet delivered to application

Initial
sequence
number

Receiver's window
(Allocation buffer)
Up to 2^16-1 slots

Window
shifts

rw
nd advertisem

ent



Some Visualizations

• Normal conditions:  
https://www.youtube.com/watch?v=zY3Sxvj8kZA

• With packet loss:  
https://www.youtube.com/watch?v=lk27yiITOvU

https://www.youtube.com/watch?v=zY3Sxvj8kZA
https://www.youtube.com/watch?v=lk27yiITOvU


How do ACKs work?

• ACK contains next expected sequence number
• If one segment is missed but new ones received, send duplicate 

ACK
• If receiver gets 3 dup ACKs, retransmit

• How to know when to retransmit? Compute based on observed 
RTT, more on this later



When to Transmit?

• Nagle’s algorithm
• Goal: reduce the overhead of small packets

if (there is data to send) and (window >= MSS)
Send a MSS segment

else
if there is unAcked data in flight

buffer the new data until ACK arrives
else

send all the new data now
• Receiver should avoid advertising a window <= MSS after advertising 

a window of 0



Delayed Acknowledgments

• Goal: Piggy-back ACKs on data
– Delay ACK for 200ms in case application sends data
– If more data received, immediately ACK second segment
– Note: never delay duplicate ACKs (if missing a segment)

• Warning: can interact badly with Nagle for some applications
– Nagle waits for ACK until send => Temporary deadlock
– App can disable Nagle with TCP_NODELAY
– App should also avoid many small writes



Limitations of Flow Control

• Network may be the bottleneck
– Signal from receiver not enough!

• Sending too fast will cause queue overflows, heavy packet loss
• Flow control provides correctness
• Need more for performance: congestion control



Second goal

• We should not send more data than the network can take:
congestion control


