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Transport Layer |

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazieres, Phil Levis, John Jannotti



Administrivia

« Later today: Look for message about IP grading
— Meeting slots first week after break (and during break)

« TCP: Draft of assignment out today
— Read it over before break, start when we get back

« Summer/UTA hiring: Expect a message from me today/
tomorrow



Today

Light overview of the transport layer and TCP
— Why we need TCP
— What components are involved

— What you will do in the project



Transport Layer
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« Transport protocols sit on top of network layer

« Problem solved: communication among processes
— Application-level multiplexing (“ports”)
— Error detection, reliability, etc.
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\ Basic transport: UDP

~ o

|

User Datagram Protocol
+ Unreliable datagram service

« Adds multiplexing (via ports) and nothing else
« Checksum is pretty useless

N



Next Problem: Reliability
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We talked briefly about link-layer reliability:

Problem Mechanism

\~\ Dropped Packets Acknowledgments + Timeout

[l Duplicate Packets Sequence Numbers

l Packets out of order Receiver Window

Maximizing throughput Sliding Window (Pipelining)




Next Problem: Reliability

We talked briefly about link-layer reliability:

Problem Mechanism
Dropped Packets Acknowledgments + Timeout

Duplicate Packets Sequence Numbers

Packets out of order Receiver Window

Maximizing throughput Sliding Window (Pipelining)

 Single link: things were easy... ©



Transport Layer Reliability

« Extra difficulties
— Multiple hosts
— Multiple hops
— Multiple potential paths



Transport Layer Reliability

« Extra difficulties
— Multiple hosts ~— —DFFL LMK TLME&A&E)}
— Multiple hops ~ D)FFLRET NST CAOAB/LITIES
— Multiple potential paths
« What does this mean?
— Multiple opportunities for failure

— Hosts have different resources
— Varying RTTs



Extra Difficulties (cont.)

« Out of order packets
— Not only because of drops/retransmissions

— Can get very old packets (up to 120s), must not get confused
—_——



Extra Difficulties (cont.)

« Out of order packets

— Not only because of drops/retransmissions

— Can get very old packets (up to 120s), must not get confused
« Unknown resources at other end

— Must be able to discover receiver buffer: flow control




Extra Difficulties (cont.)

« Out of order packets 7A —

— Not only because of drops/retransmissions

— Can get very old packets (up to 120s), must not get confused
« Unknown resources at other end

— Must be able to discover receiver buffer: flow control

 Unknown resources in the network
— Should not overload the network

— But should use as much as safely possible to maximize throughput
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TCP = Transmission Control Protocol
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TCP = Transmission Control Protocol
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« Service model: “reliable, connection oriented, full duplex ordered byte
stream” ——




TCP = Transmission Control Protocol

Application process Application process
[

—J

TCP
Send buffer Receive buffer

Transmit segments

« Service model: “reliable, connection oriented, full duplex ordered byte
stream”

« Flow control: If one end stops reading, writes at other eventually stop/fail
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TCP = Transmission Control Protocol

Application process Application process
[

—J

TCP
Send buffer Receive buffer

Transmit segments

« Service model: “reliable, connection oriented, full duplex ordered byte
stream”

 Flow control: If one end stops reading, writes at other eventually stop/fail
. MControlz Keeps sender from overloading the network

B —



TCP

Specification
— RFC 793 (1981), RFC 1222 (1989, some corrections), RFC 5681
(2009, congestion control), ...

« Was born coupled with IP, later factored out DE
D
. End—to—engcj_protocol INTISTY e M (KLTS é
— Minimal assumptions on the network ST ):Oﬂ,u)}”/f oF 7—510‘
— All mechanisms run on the end points vl P

What if you had link-layer reliability instead?




Why not provide X on the network layer?

X = Reliability, security, message ordering...
« Cost

— These functionalities are not free: don't burden those who don't need
them
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X = Reliability, security, message ordering...
« Cost

— These functionalities are not free: don't burden those who don't need
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« Conflicting

— Timeliness and in-order delivery, for example
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Why not provide X on the network layer?

X = Reliability, security, message ordering...
« Cost

— These functionalities are not free: don't burden those who don't need
them

« Conflicting
— Timeliness and in-order delivery, for example
« Insufficient

— Example: reliability



End-to-end argument

* Functions placed at lower levels of a system may be redundant or
of little value

— They may need to be performed at a higher layer anyway

« But they may be justified for performance reasons

St



End-to-end argument

* Functions placed at lower levels of a system may be redundant or
of little value
— They may need to be performed at a higher layer anyway
« But they may be justified for performance reasons
— Or just because they provide most of what is needed
— Example: retransmissions

« Takeaway: weigh the costs and benefits at each layer



TCP Header
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Header Fields

Ports: multiplexing

Sequence number

— Correspond to bytes, not packets!
Acknowledgment Number

— Next expected sequence number

Window: willing to receive

— Lets receiver limit SWS (even to 0) for flow control
Data Offset: # of 4 byte (header + option bytes)
Flags, Checksum, Urgent Pointer



Header Flags

URG: whether there is urgent data

ACK: ack no. valid (all but first segment)

PSH: push data to the application immediately
RST: reset connection

SYN: synchronize, establishes connection

FIN: close connection
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Establishing a Connection

Active participant Passive participant|
(client) (server)

listen(),
accept()

accept()
returns

Three-way handshake

— Two sides agree on respective initial sequence nums
If no one is listening on port: server sends RST
If server is overloaded: ignore SYN

If no SYN-ACK: retry, timeout



Connection Termination

« FIN bit says no more data to send
— Caused by close or shutdown

— Both sides must send FIN to close a connection

Close £
FIN WAIT 1 IN

« Typical close

ACK CLOSE_WAIT

FIN WAIT 2
Close

FIN LAST ACK
TIME_WAIT
ACk CLOSED

CLOSED

2MSL



Summary of TCP States




Summary of TCP States

CLOSED
Active open/SY
Passive open

SYN/SYN + ACK Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

Close/FIN

Close/FIN FIN/ACK
FIN_WAIT_1 CLOSE_WAIT

Close/FIN

CLOSING

ACK Timeout after.two
segment lifetimes

Connection Establishment



Summary of TCP States

CLOSED

Passive open

SYN/SYN + ACK Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

Close/FIN

Active close:
Can still receive

Active open/SY

Connection Establishment



Summary of TCP States

CLOSED

Passive open

SYN/SYN + ACK Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

Close/FIN

Active close:
Can still receive

Active open/SY

Connection Establishment

Passive close:
Can still send!



Next class

« Sending data over TCP



