CSCI-1680
Transport Layer |

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazieres, Phil Levis, John Jannotti

Administrivia

« Later today: Look for message about IP grading
— Meeting slots first week after break (and during break)

« TCP: Draft of assignment out today
— Read it over before break, start when we get back

« Summer/UTA hiring: Expect a message from me today/
tomorrow

Today

Light overview of the transport layer and TCP
— Why we need TCP
— What components are involved

— What you will do in the project

Transport Layer

y A @ Ay 2 Ay 2 4
FTP HTTP NV

« Transport protocols sit on top of network layer

« Problem solved: communication among processes
— Application-level multiplexing (“ports”)
— Error detection, reliability, etc.

From Lec 2: OSI| Reference Model

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

)

A A
Network Network

h i
Data link Data link

h i

Physical — Physical

\

N

One or more nodes
within the network

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

From Lec 2: OSI| Reference Model

End host

Application
Presentation
Session

Transport
y === 4av @0 4
Network Network

ink- Layer Proto# E—
Data link -\—

- - Data link Data link = =— =

Physical —— T Physical

Network ‘

~ Physical

\
One or more nodes
within the network

End host

Application

Presentation

Session

Transport

Network

' Data link

Physical

From Lec 2: OSI| Reference Model

End host End host

A—
Application Application

Presentation Presentation
Session Session

Transport

. Transports

k= = -)— - Network

*

Data link ™ =— = = Data link

Physical Physical — Physical Physical
One or more nodes
within the network

Networ

From Lec 2: OSI| Reference Model

End host End host

A—
Application Application

Presentation Presentation

Session Session

Transport F’rotocol

Transport | ™ W = == = = = == N> Transport

Y—
etwork OCOmmmmy _c— i
Network = == == -

Network Network ™~ =™ "q ™ - Network

Data ik |nk Lal_yer Prot A— *

- - Data link Data link — = = == Data link

Physical —— T Physical

Physical Physical

\
One or more nodes
within the network

From Lec 2: OSI| Reference Model

End host End host

Application Protocol

A—
\ Application " Application

Presentation Presentation

Session Session

Transport F’rotocol

Transport | ™ W = == = = = == N> Transport

Y—
etwork OCOmmmmy _c— i
Network = == == -

Network Network ™~ =™ "q ™ - Network

Data ik |nk Lal_yer Prot A— *

- - Data link Data link — = = == Data link

Physical —— T Physical

Physical Physical

\
One or more nodes
within the network

\ Basic transport: UDP

~ o

|

User Datagram Protocol
+ Unreliable datagram service

« Adds multiplexing (via ports) and nothing else
« Checksum is pretty useless

N

Next Problem: Reliability

o<
ra

We talked briefly about link-layer reliability:

Problem Mechanism

\~\ Dropped Packets Acknowledgments + Timeout

[l Duplicate Packets Sequence Numbers

l Packets out of order Receiver Window

Maximizing throughput Sliding Window (Pipelining)

Next Problem: Reliability

We talked briefly about link-layer reliability:

Problem Mechanism
Dropped Packets Acknowledgments + Timeout

Duplicate Packets Sequence Numbers

Packets out of order Receiver Window

Maximizing throughput Sliding Window (Pipelining)

 Single link: things were easy... ©

Transport Layer Reliability

« Extra difficulties
— Multiple hosts
— Multiple hops
— Multiple potential paths

Transport Layer Reliability

« Extra difficulties
— Multiple hosts ~— —DFFL LMK TLME&A&E)}
— Multiple hops ~ D)FFLRET NST CAOAB/LITIES
— Multiple potential paths
« What does this mean?
— Multiple opportunities for failure

— Hosts have different resources
— Varying RTTs

Extra Difficulties (cont.)

« Out of order packets
— Not only because of drops/retransmissions

— Can get very old packets (up to 120s), must not get confused
—_——

Extra Difficulties (cont.)

« Out of order packets

— Not only because of drops/retransmissions

— Can get very old packets (up to 120s), must not get confused
« Unknown resources at other end

— Must be able to discover receiver buffer: flow control

Extra Difficulties (cont.)

« Out of order packets 7A —

— Not only because of drops/retransmissions

— Can get very old packets (up to 120s), must not get confused
« Unknown resources at other end

— Must be able to discover receiver buffer: flow control

 Unknown resources in the network
— Should not overload the network

— But should use as much as safely possible to maximize throughput

- o) ” 0
¢ v g OF
> fﬁ’w{%sc&&o& AL

TCP = Transmission Control Protocol

A v ’
— D
P | 2P B pPP I oer
)&§J v ge py v 70/0 2ety/,
TP STheK, C(f;ftﬁﬁgg) TP STACK. p e
D PupFLn ’ Wil
pS
st s TN

TCP = Transmission Control Protocol

Application process Application process
[

—J

TCP
Send buffer Receive buffer

Transmit segments

TCP = Transmission Control Protocol

Application process Application process

]

[
cp

TCP T
Send buffer Receive buffer

Transmit segments

« Service model: “reliable, connection oriented, full duplex ordered byte
stream” ——

TCP = Transmission Control Protocol

Application process Application process
[

—J

TCP
Send buffer Receive buffer

Transmit segments

« Service model: “reliable, connection oriented, full duplex ordered byte
stream”

« Flow control: If one end stops reading, writes at other eventually stop/fail
G—’/—\

TCP = Transmission Control Protocol

Application process Application process
[

—J

TCP
Send buffer Receive buffer

Transmit segments

« Service model: “reliable, connection oriented, full duplex ordered byte
stream”

 Flow control: If one end stops reading, writes at other eventually stop/fail
. MControlz Keeps sender from overloading the network

B —

TCP

Specification
— RFC 793 (1981), RFC 1222 (1989, some corrections), RFC 5681
(2009, congestion control), ...

« Was born coupled with IP, later factored out DE
D
. End—to—engcj_protocol INTISTY e M (KLTS é
— Minimal assumptions on the network ST):Oﬂ,u)}”/f oF 7—510‘
— All mechanisms run on the end points vl P

What if you had link-layer reliability instead?

Why not provide X on the network layer?

X = Reliability, security, message ordering...
« Cost

— These functionalities are not free: don't burden those who don't need
them

Why not provide X on the network layer?

X = Reliability, security, message ordering...
« Cost

— These functionalities are not free: don't burden those who don't need
them

« Conflicting

— Timeliness and in-order delivery, for example
HETTEsS il Bl

Why not provide X on the network layer?

X = Reliability, security, message ordering...
« Cost

— These functionalities are not free: don't burden those who don't need
them

« Conflicting
— Timeliness and in-order delivery, for example
« Insufficient

— Example: reliability

End-to-end argument

* Functions placed at lower levels of a system may be redundant or
of little value

— They may need to be performed at a higher layer anyway

« But they may be justified for performance reasons

St

End-to-end argument

* Functions placed at lower levels of a system may be redundant or
of little value
— They may need to be performed at a higher layer anyway
« But they may be justified for performance reasons
— Or just because they provide most of what is needed
— Example: retransmissions

« Takeaway: weigh the costs and benefits at each layer

TCP Header

0 1 2 3
012345678901234567890123456789¢01

| Source Port | Destination Port |

| Sequence Number | IS]

B e e e e e e e e e e e e e

| Acknowledgment Number | _
Aottt o o o b o S e o o) & ug)/ S‘L*Ql)wbb

| Data | |[UIA|P|RISIF |

| Offset| Reserved |R|C|S|S|Y|I Window | KbCEIVED

I | IGIKIHITIN|NI |

t—t—t—t—t—t—t—t—t-FoF=r= =t H ==ttt oo

| Checksum \’ Urgent Pointer |
1 =
| Optibns | Padding | #6[}) m,]} C‘H S VALL
R A e A A E e B, SRR FH F F i e e e B B e b e e B B e e e e

[data [

+

B s e e e e e e e e e e e e e e e e e e et el S et el St et Sl et 77]5 ZM&‘“}M MJ
Fon pah

Header Fields

Ports: multiplexing

Sequence number

— Correspond to bytes, not packets!
Acknowledgment Number

— Next expected sequence number

Window: willing to receive

— Lets receiver limit SWS (even to 0) for flow control
Data Offset: # of 4 byte (header + option bytes)
Flags, Checksum, Urgent Pointer

Header Flags

URG: whether there is urgent data

ACK: ack no. valid (all but first segment)

PSH: push data to the application immediately
RST: reset connection

SYN: synchronize, establishes connection

FIN: close connection

ESTARLISNING A TCD EaIETTion

1, N
ELT Ayt Ew,mw 0 7
LUk e T

Comecr () Sy ooy
SVN-sw\ o REVD)
% gty o
AL —CerC VP copwscrion
~LOLEE o Gy

Ak MUMPBLS
Atks J4)

i/

. , Acl ¢pr () prritts
_ EATARLISNED — e () pei

Establishing a Connection

Active participant Passive participant|
(client) (server)

listen(),
accept()

accept()
returns

Three-way handshake

— Two sides agree on respective initial sequence nums
If no one is listening on port: server sends RST
If server is overloaded: ignore SYN

If no SYN-ACK: retry, timeout

Connection Termination

« FIN bit says no more data to send
— Caused by close or shutdown

— Both sides must send FIN to close a connection

Close £
FIN WAIT 1 IN

« Typical close

ACK CLOSE_WAIT

FIN WAIT 2
Close

FIN LAST ACK
TIME_WAIT
ACk CLOSED

CLOSED

2MSL

Summary of TCP States

Summary of TCP States

CLOSED
Active open/SY
Passive open

SYN/SYN + ACK Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

Close/FIN

Close/FIN FIN/ACK
FIN_WAIT_1 CLOSE_WAIT

Close/FIN

CLOSING

ACK Timeout after.two
segment lifetimes

Connection Establishment

Summary of TCP States

CLOSED

Passive open

SYN/SYN + ACK Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

Close/FIN

Active close:
Can still receive

Active open/SY

Connection Establishment

Summary of TCP States

CLOSED

Passive open

SYN/SYN + ACK Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

Close/FIN

Active close:
Can still receive

Active open/SY

Connection Establishment

Passive close:
Can still send!

Next class

« Sending data over TCP

