
CSCI-1680
Transport Layer I

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazières, Phil Levis, John Jannotti

Administrivia

• Later today: Look for message about IP grading
–Meeting slots first week after break (and during break)

• TCP: Draft of assignment out today
– Read it over before break, start when we get back

• Summer/UTA hiring: Expect a message from me today/
tomorrow

Today

Light overview of the transport layer and TCP
–Why we need TCP

–What components are involved

–What you will do in the project

Transport Layer

• Transport protocols sit on top of network layer
• Problem solved: communication among processes

– Application-level multiplexing (“ports”)
– Error detection, reliability, etc.

SCTP
QUIC

From Lec 2: OSI Reference Model

From Lec 2: OSI Reference Model

Link-Layer Protocol

From Lec 2: OSI Reference Model

Network Protocol

Link-Layer ProtocolI

From Lec 2: OSI Reference Model

Transport Protocol

Network Protocol

Link-Layer Protocol

From Lec 2: OSI Reference Model
Application Protocol

Transport Protocol

Network Protocol

Link-Layer Protocol

sock

d

Basic transport: UDP

User Datagram Protocol
• Unreliable datagram service
• Adds multiplexing (via ports) and nothing else
• Checksum is pretty useless

I

f PortnomBms

__

Next Problem: Reliability

We talked briefly about link-layer reliability:

Problem Mechanism
Acknowledgments + Timeout Dropped Packets

Duplicate Packets Sequence Numbers

Packets out of order Receiver Window

Maximizing throughput Sliding Window (Pipelining)

I

I
a

MF

Next Problem: Reliability

We talked briefly about link-layer reliability:

Problem Mechanism
Acknowledgments + Timeout Dropped Packets

Duplicate Packets Sequence Numbers

Packets out of order Receiver Window

Maximizing throughput Sliding Window (Pipelining)

• Single link: things were easy… ☺

Transport Layer Reliability

• Extra difficulties
–Multiple hosts

–Multiple hops

–Multiple potential paths

Transport Layer Reliability

• Extra difficulties
–Multiple hosts

–Multiple hops

–Multiple potential paths

• What does this mean?
–Multiple opportunities for failure

– Hosts have different resources

– Varying RTTs

DIFFERENT LINK TYPESSPEED

DIFFERENT HOST CAPABILITIES

Extra Difficulties (cont.)

• Out of order packets
– Not only because of drops/retransmissions
– Can get very old packets (up to 120s), must not get confused

Extra Difficulties (cont.)

• Out of order packets
– Not only because of drops/retransmissions
– Can get very old packets (up to 120s), must not get confused

• Unknown resources at other end
–Must be able to discover receiver buffer: flow control

TEL SENDEN TO

stoPkIMITDI

Extra Difficulties (cont.)

• Out of order packets
– Not only because of drops/retransmissions
– Can get very old packets (up to 120s), must not get confused

• Unknown resources at other end
–Must be able to discover receiver buffer: flow control

• Unknown resources in the network
– Should not overload the network
– But should use as much as safely possible to maximize throughput

A D

TARNESS IN USE OF
SCARCE BW

TCP – Transmission Control Protocol

A B
App SENDDATA ppp Provins

M
X TO HOSTPG TO TIP ON REV

TCP
STACH

KERNED
YourNODE

TCPSTACK R BUF
SEND BUFFER Af I
stgmeatySEGMENTS M

text

TCP – Transmission Control Protocol

TCP – Transmission Control Protocol

• Service model: “reliable, connection oriented, full duplex ordered byte
stream” 3

TCP – Transmission Control Protocol

• Service model: “reliable, connection oriented, full duplex ordered byte
stream”

• Flow control: If one end stops reading, writes at other eventually stop/fail

TCP – Transmission Control Protocol

• Service model: “reliable, connection oriented, full duplex ordered byte
stream”

• Flow control: If one end stops reading, writes at other eventually stop/fail
• Congestion control: Keeps sender from overloading the networkI

TCP

• Specification
– RFC 793 (1981), RFC 1222 (1989, some corrections), RFC 5681

(2009, congestion control), …

• Was born coupled with IP, later factored out

• End-to-end protocol
–Minimal assumptions on the network

– All mechanisms run on the end points

• What if you had link-layer reliability instead?

HOPS IN THE
MIDDLE

JUST
FORWARD

PACKETS

NOT AWARE
OFTCP

Why not provide X on the network layer?

X = Reliability, security, message ordering…

• Cost
– These functionalities are not free: don’t burden those who don’t need

them

Why not provide X on the network layer?

X = Reliability, security, message ordering…

• Cost
– These functionalities are not free: don’t burden those who don’t need

them

• Conflicting
– Timeliness and in-order delivery, for example

Why not provide X on the network layer?

X = Reliability, security, message ordering…

• Cost
– These functionalities are not free: don’t burden those who don’t need

them

• Conflicting
– Timeliness and in-order delivery, for example

• Insufficient
– Example: reliability

End-to-end argument

• Functions placed at lower levels of a system may be redundant or
of little value
– They may need to be performed at a higher layer anyway

• But they may be justified for performance reasons
WIFI

End-to-end argument

• Functions placed at lower levels of a system may be redundant or
of little value
– They may need to be performed at a higher layer anyway

• But they may be justified for performance reasons
– Or just because they provide most of what is needed

– Example: retransmissions

• Takeaway: weigh the costs and benefits at each layer

TCP Header
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Source Port | Destination Port |
+-+
| Sequence Number |
+-+
| Acknowledgment Number |
+-+
Data		U	A	P	R	S	F	
Offset	Reserved	R	C	S	S	Y	I	Window
		G	K	H	T	N	N	
+-+								
Checksum	Urgent Pointer							
+-+								
Options	Padding							
+-+								
data								
+-+

WHERE THIS PACKET

IS IN STREAM

LAST SEQUENCE
RECEIVED

X
HOWMUCH SPACE

THE RECEIVERHIS

FLAGS
FOR DATA

Header Fields

• Ports: multiplexing
• Sequence number
– Correspond to bytes, not packets!

• Acknowledgment Number
– Next expected sequence number

• Window: willing to receive
– Lets receiver limit SWS (even to 0) for flow control

• Data Offset: # of 4 byte (header + option bytes)
• Flags, Checksum, Urgent Pointer

Header Flags

• URG: whether there is urgent data

• ACK: ack no. valid (all but first segment)

• PSH: push data to the application immediately

• RST: reset connection

• SYN: synchronize, establishes connection

• FIN: close connection

a

ESTABLISHING A TED CONNECTION

CLIENT SERVER LISTENINGON
SOME Port

I
syn.su sEXgysYN.REVD

ti AGREE ON SEQ
it

NUMBERS

ESTABLISHED HERE

Establishing a Connection

• Three-way handshake
– Two sides agree on respective initial sequence nums

• If no one is listening on port: server sends RST
• If server is overloaded: ignore SYN
• If no SYN-ACK: retry, timeout

listen(),
accept()

accept()
returns

connect()

Connection Termination

• FIN bit says no more data to send
– Caused by close or shutdown

– Both sides must send FIN to close a connection

• Typical close
FIN

ACK

FIN

ACK

Close

Close

FIN_WAIT_1

CLOSE_WAIT

FIN_WAIT_2

LAST_ACK
TIME_WAIT

CLOSED

CLOSED

…

2M
SL

Summary of TCP States

Summary of TCP States

C
on

ne
ct

io
n

Es
ta

bl
is

hm
en

t

Summary of TCP States

Active close:
Can still receive

C
on

ne
ct

io
n

Es
ta

bl
is

hm
en

t

Summary of TCP States

Passive close:
Can still send!Active close:

Can still receive

C
on

ne
ct

io
n

Es
ta

bl
is

hm
en

t

Next class

• Sending data over TCP

