
CSCI-1680
Network Layer:

Intra-domain Routing
Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazières, Phil Levis, John Jannotti

Administrivia

• IP milestone meetings: Should meet with staff on/before
Monday, March 7
– Sign up link on website
– Try to find a slot with your mentor, pick any slot if you can’t

• HW2: Out next week

Challenges in moving packets

• Forwarding: given a packet, decide which interface to
send the packet (based on IP destination)

• Routing: network-wide process of determining a
packet’s path through the network

Today

Routing
• Intra-Domain Routing
• Next class: Inter-Domain Routing

Routing

• Routing is the process of updating forwarding tables
– Routers exchange messages about routers or networks they can

reach
– Goal: find optimal route for every destination
– … or maybe a good route, or any route (depending on scale)

• Challenges
– Dynamic topology
– Decentralized
– Scale

Scaling Issues

• Every router must be able to forward based on any
destination IP address
– Given address, it needs to know next hop
– Naïve: one entry per address
– There would be 108 entries!

• Solutions
– Hierarchy (many examples)
– Address aggregation

• Address allocation is very important (should mirror topology)
– Default routes

IP Connectivity

• For each destination address, must either:
– Have prefix mapped to next hop in forwarding table
– Know “smarter router” – default for unknown prefixes

• Core routers know everything – no default
• Manage using notion of Autonomous System (AS)

NSFNET backboneStanford

BARRNET
regional

Berkeley
PARC

NCAR

UA

UNM

Westnet
regional

UNL KU

ISU

MidNet
regional…

Internet structure, 1990

• Several independent organizations
• Hierarchical structure with single

backbone

Internet structure, today

• Multiple backbones, more arbitrary
structure

Backbone service provider

Peering
point

Peering
point

Large corporation

Large corporation

Small
corporation

“Consumer” ISP

“Consumer” ISP

“Consumer” ISP

Autonomous Systems

• Correspond to an administrative domain
– AS’s reflect organization of the Internet
– E.g., Brown, large company, etc.
– Identified by a 16-bit number (now 32)

• Goals
– AS’s choose their own local routing algorithm
– AS’s want to set policies about non-local routing
– AS’s need not reveal internal topology of their network

11

Map of the Internet, 2021 (via BGP)
OPTE project

Inter and Intra-domain routing

Routing organized in two levels
• Intra-domain routing

– Complete knowledge, strive for optimal paths
– Scale to ~100 networks
– Today

• Inter-domain routing
– Aggregated knowledge, scale to Internet
– Dominated by policy

• E.g., route through X, unless X is unavailable, then route through Y. Never route
traffic from X to Y

– Policies reflect business agreements, can get complex
– Next lecture

Intra-Domain Routing

Network as a graph

• Nodes are routers
• Assign cost to each edge

– Can be based on latency, b/w, queue length, …

• Problem: find lowest-cost path between nodes
– Each node individually computes routes
– Collect routes into a routing table, used to generate the

forwarding table based on lowest-cost path

4

3
6

2
1

9

1

1
D

A

F
E

B

C

Intra-domain Routing Algorithms

Two classes of intra-domain routing algorithms
• Distance Vector (Bellman-Ford shortest path algorithm)

– Each node gets updates from neighbors
– Harder to debug
– Can suffer from loops

• Link State (Djikstra-Prim SP Algorithm)
– Each node has global view of the network
– Simpler to debug
– Requires global state

Distance Vector Routing

• Each node maintains a set of triples
– <Destination, Cost, NextHop>

• Exchange updates with neighbors
– Periodically (seconds to minutes)
– Whenever table changes (triggered update)

• Each update is a list of <Destination, Cost> pairs
• Update local table if receive a “better” route

– Smaller cost

• Refresh existing routes, delete if time out

Calculating the best path

Bellman-Ford equation
Let:

– Da(b) = the current best distance from a to b
– c(a,b) = the cost of a link from a to b

For some path x → y, where x has set of neighbors Z:
Dx(y) = minz(c(x,z) + Dz(y)) ∀ z ∈ Z

In practice:
• Routing messages contain D
• D is any additive metric (number of hops, delay, …)

DV Example

Dest. Cost Next
Hop

A 1 A
C 1 C
D 2 C
E 2 A
F 2 A
G 3 A

B’s routing table

D

G

A

F

E

B

C

G, 1, G

Adapting to Failures

• F-G fails
• F sets distance to G to infinity, propagates
• A sets distance to G to infinity
• A receives periodic update from C with 2-hop path to G
• A sets distance to G to 3 and propagates
• F sets distance to G to 4, through A

G, ∞, -G, 4, A

D

G

A

F

E

B

C
G, 2, F

G, 2, D
G, 3, C

G, 3, A

G, 1, GG, ∞,-G, 3,C

G, 4, A

Count-to-Infinity

• Link from A to E fails
• A advertises distance of infinity to E
• B and C advertise a distance of 2 to E
• B decides it can reach E in 3 hops through C
• A decides it can reach E in 4 hops through B
• C decides it can reach E in 5 hops through A, …
• When does this stop?

D

G

A

F

E

B

C

Good news travels fast

• A decrease in link cost must be fresh information
• Network converges at most in O(diameter) steps

A

B

C

4 1

10

1

Bad news travels slowly

• An increase in cost may cause confusion with old information, may form loops
• Consider routes to A
• Initially, B:A,4,A; C:A,5,B
• Then B:A,12,A, selects C as next hop -> B:A,6,C
• C -> A,7,B; B -> A,8,C; C -> A,9,B; B -> A,10,C;
• C finally chooses C:A,10,A, and B -> A,11,C!

A

B

C

4 1

10

12

How to avoid loops

• IP TTL field prevents a packet from living forever
– Does not repair a loop

• Simple approach: consider a small cost n (e.g., 16) to be
infinity
– After n rounds decide node is unavailable
– But rounds can be long, this takes time

Problem: distance vector based only on local information

Better loop avoidance

• Split Horizon
– When sending updates to node A, don’t include routes you

learned from A
– Prevents B and C from sending cost 2 to A

• Split Horizon with Poison Reverse
– Rather than not advertising routes learned from A, explicitly

include cost of ∞.
– Faster to break out of loops, but increases advertisement sizes

Warning

• Split horizon/split horizon with poison reverse only help
between two nodes
– Can still get loop with three nodes involved
– Might need to delay advertising routes after changes, but affects

convergence time

Other approaches

• DSDV: destination sequenced distance vector
– Uses a ‘version’ number per destination message
– Avoids loops by preventing nodes from using old information

from descendants
– But, you can only update when new version comes from root

• Path Vector: (BGP)
– Replace ‘distance’ with ‘path’
– Avoids loops with extra cost

Link State Routing

• Strategy:
– send to all nodes information about directly connected

neighbors

• Link State Packet (LSP)
– ID of the node that created the LSP
– Cost of link to each directly connected neighbor
– Sequence number (SEQNO)
– TTL

Reliable Flooding

• Store most recent LSP from each node
– Ignore earlier versions of the same LSP

• Forward LSP to all nodes but the one that sent it
• Generate new LSP periodically

– Increment SEQNO
• Start at SEQNO=0 when reboot

– If you hear your own packet with SEQNO=n, set your next SEQNO
to n+1

• Decrement TTL of each stored LSP
– Discard when TTL=0

Calculating best path

• Djikstra’s single-source shortest path algorithm
– Each node computes shortest paths from itself

• Let:
– N denote set of nodes in the graph
– l(i,j) denote the non-negative link between i,j

• ∞ if there is no direct link between i and j
– s denotes yourself (node computing paths)
– C(n) denote the cost of path from s to n

• Initialize variables
– M = {s} (set of nodes incorporated thus far)
– For each n in N-{s}, C(n) = l(s,n)
– Next(n) = n if l(s,n) < ∞, – otherwise

Djikstra’s Algorithm

• While N≠M
– Let w ∈(N-M) be the node with lowest C(w)
– M = M ∪ {w}
– Foreach n ∈ (N-M), if C(w) + l(w,n) < C(n)

then C(n) = C(w) + l(w,n), Next(n) = Next(w)
• Example: D: (D,0,-) (C,2,C) (B,5,C) (A,10,C)

D

A

B

C

5 3

2
11

10

Distance Vector vs. Link State

• # of messages (per node)
– DV: O(d), where d is degree of node
– LS: O(nd) for n nodes in system

• Computation
– DV: convergence time varies (e.g., count-to-infinity)
– LS: O(n2) with O(nd) messages

• Robustness: what happens with malfunctioning router?
– DV: Nodes can advertise incorrect path cost, which propagates

through network
– LS: Nodes can advertise incorrect link cost

Metrics

• Original ARPANET metric
– measures number of packets enqueued in each link
– neither latency nor bandwidth in consideration

• New ARPANET metric
– Stamp arrival time (AT) and departure time (DT)
– When link-level ACK arrives, compute

Delay = (DT – AT) + Transmit + Latency
– If timeout, reset DT to departure time for retransmission
– Link cost = average delay over some time period

• Fine Tuning
– Compressed dynamic range
– Replaced Delay with link utilization

• Today: commonly set manually to achieve specific goals

Examples

• RIPv2
– Fairly simple implementation of DV
– RFC 2453 (38 pages)

• OSPF (Open Shortest Path First)
– More complex link-state protocol
– Adds notion of areas for scalability
– RFC 2328 (244 pages)

• ISIS (Intermediate System to Intermediate System)
– OSI standard (210 pages)
– Link-state protocol (similar to OSPF)
– Does not depend on IP

OSPFv2

• Link state protocol
• Runs directly over IP (protocol 89)

– Must provide its own reliability

• All exchanges are authenticated
• Adds notion of areas for scalability

OSPF Areas

• Area 0 is “backbone” area (includes all boundary routers)
• Traffic between two areas must always go through area 0
• Only need to know how to route exactly within area
• Otherwise, just route to the appropriate area
• Tradeoff: scalability versus optimal routes

OSPF AreasOSPF areas

RIPv2

• Runs on UDP port 520
– (IP assignment: directly in IP, protocol 200)

• Link cost = 1
• Periodic updates every 30s, plus triggered updates
• Relies on count-to-infinity to resolve loops

– Maximum diameter 15 (∞ = 16)
– Supports split horizon, poison reverse

• Deletion
– If you receive an entry with metric = 16 from parent OR
– If a route times out

Packet format

RIPv2 packet format

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| command (1) | version (1) | must be zero (2) |

+---------------+---------------+-------------------------------+

| |

~ RIP Entry (20) ~

| |

+---------------+---------------+---------------+---------------+

RIPv2 Entry
RIPv2 Entry

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| address family identifier (2) | Route Tag (2) |

+-------------------------------+-------------------------------+

| IP address (4) |

+---+

| Subnet Mask (4) |

+---+

| Next Hop (4) |

+---+

| Metric (4) |

+---+

Route Tag field

• Allows RIP nodes to distinguish internal and external
routes

• Must persist across announcements
• E.g., encode AS

Next Hop field

• Allows one router to advertise routes for multiple routers
on the same subnet

• Suppose only XR1 talks RIPv2:

Next Hop Field

• Allows one router to advertise routes for multiple
routers on same subnet

• Suppose only XR1 talks RIP2:
----- ----- ----- ----- ----- -----

|IR1| |IR2| |IR3| |XR1| |XR2| |XR3|

--+-- --+-- --+-- --+-- --+-- --+--

| | | | | |

--+-------+-------+---------------+-------+-------+--

<-------------RIP-2------------->

Next Class

• Inter-domain routing: how scale routing to the entire
Internet

