
CSCI-1680
Link Layer III

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazières, Phil Levis, John Jannotti

Administrivia

• Snowcast: Due tomorrow (Feb 16), 11:59pm
• HW1: Out today, due next Tuesday
• IP Project: Out Thursday (Intro in class)
• My office hours today

– 2-3pm (Remote, join via Hours)
– 3-5pm (Group, CIT506)

Today: Link Layer (cont.)

Various switching topics
• VLANs
• Dealing with loops (Spanning Tree Protocol)
• Inside switches

Recap

• Media access control
• Ethernet

– Carrier Sense Multiple Access / Collision Detection (CSMA/CD)
– All hosts have a MAC address: (eg. 00:1c:43:00:3d:09)
– Original Ethernet: same collision domain
– Now: switches separate collision domains per-link, but all hosts

still in same broadcast domain
– Broadcast frames more intelligently with MAC learning

• Some broadcast traffic is good!

What happens in wireless?

• Can we use CSMA/CD?

VLANs

Consider: Company network, A and B departments
– Broadcast traffic does not scale
– May not want traffic between the two departments
– Topology has to mirror physical locations
– What if employees move between offices?

b1

b2

a1

a2

VLANs

• Solution: Virtual LANs
– Assign switch ports to a VLAN ID (color)
– Isolate traffic: only same color
– Trunk links may belong to multiple VLANs
– Encapsulate packets: add 12-bit VLAN ID

• Easy to change, no need to rewire

a2

b2

a1

b1

Dealing with Loops

Problem: people may create loops in LAN!
– Accidentally, or to provide redundancy
– Don’t want to forward packets indefinitely

A

C

E

D

B

K

F

H

J

G

I

B3

B7

B4

B2

B5

B1

B6

Enter Radia Perlman

“…we have designed an algorithm that allows the
extended network to consist of an arbitrary topology. (…)
The algorithm (…) computes a subset of the topology that
connects all LANs yet is loop-free (a spanning tree).”

Perlman, Radia (1985). "An Algorithm for Distributed Computation of a Spanning
Tree in an Extended LAN". ACM SIGCOMM Computer Communication
Review. 15 (4): 44–53. doi:10.1145/318951.319004

https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1145%2F318951.319004

Spanning Tree

• Need to disable ports, so that no loops in network
• Like creating a spanning tree in a graph

– View switches and networks as nodes, ports as edges

A

C

E

D

B

K

F

H

J

G

I

B5

B2

B3

B7

B4

B1

B6

Distributed Spanning Tree Algorithm

• Every bridge has a unique ID (Ethernet address)
• Goal:

– Bridge with the smallest ID is the root
– Each segment has one designated bridge, responsible for

forwarding its packets towards the root
• Bridge closest to root is designated bridge
• If there is a tie, bridge with lowest ID wins

Spanning Tree Protocol

• Send message when you think you are the root
• Otherwise, forward messages from best known root

– Add one to distance before forwarding
– Don’t forward over discarding ports (see next slide)

• Switches pick best configuration from each port (lowest
cost to root)

• In the end, only root is generating messages

Spanning Tree Protocol (cont.)

• Forwarding and Broadcasting
• Port states*:

– Root port: a port the bridge uses to reach the root
– Designated port: the lowest-cost port attached to a single

segment
– If a port is not a root port or a designated port, it is a discarding

port.

* In a later protocol RSTP, there can be ports configured as backups and alternates.

A

C

E

D

B

K

F

H

J

G

I

B5

B2

B3

B7

B4

B1

B6

Root Port

Designated Port

Discarding Port

Algorhyme
I think that I shall never see
a graph more lovely that a tree.
A tree whose crucial property
is loop-free connectivity.
A tree that must be sure to span
so packet can reach every LAN.
First the root must be selected.
By ID, it is elected.
Least cost paths from root are traced.
In the tree, these paths are placed.
A mesh is made by folks like me,
then bridges find a spanning tree.

Radia Perlman

Modern Spanning Tree

• Does this scale?

Modern STP variants
• Rapid Spanning Tree Protocol
• Multiple Spanning Tree Protocol
• Shortest Path Bridging

Switching

Switches must be able to, given a packet, determine the
outgoing port
• 3 ways to do this:

– Virtual Circuit Switching
– Datagram Switching
– Source Routing

Input
ports

T3

T3

STS-1

T3

T3

STS-1

Switch

Output
ports

Virtual Circuit Switching

• Explicit set-up and tear down phases
– Establishes Virtual Circuit Identifier on each link
– Each switch stores VC table

• Subsequent packets follow same path
– Switches map [in-port, in-VCI] : [out-port, out-VCI]

• Also called connection-oriented model

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

Host A Host B

Switch 3

Switch 2Switch 1

7

11

Virtual Circuit Model

• Requires one RTT before sending first packet
• Connection request contain full destination address,

subsequent packets only small VCI
• Setup phase allows reservation of resources, such as

bandwidth or buffer-space
– Any problems here?

• If a link or switch fails, must re-establish whole circuit
• Example: ATM, MPLS

Datagram Switching
• Each packet carries destination address
• Switches maintain address-based tables

– Maps [destination address]:[out-port]
• Also called connectionless model

0

13
2

0
1 3

2

0
13

2

Switch 3 Host B

Switch 2

Host A

Switch 1

Host C

Host D

Host E
Host F

Host G

Host H

Addr Port

A 3
B 0
C 3
D 3
E 2
F 1
G 0
H 0

Switch 2

Datagram Switching

• No delay for connection setup
• Source can’t know if network can deliver a packet
• Possible to route around failures
• Higher overhead per-packet
• Potentially larger tables at switches

Source Routing

• Packets carry entire route: ports
• Switches need no tables!

– But end hosts must obtain the path information

• Variable packet header

0

13
2

0
1 3

2

0

13

2

0

13

2
3 0 1 3 01

30 1

Switch 3

Host B

Switch 2

Host A

Switch 1

Generic Switch Architecture

• Goal: deliver packets from input to output ports
• Three potential performance concerns:

– Throughput in bytes/second
– Throughput in packets/second
– Latency Generic switch architecture

Switch
fabric

Control
processor

Output
port

Input
port

• Goal: deliver packets from input to output ports

• Three potential performance concerns:
- Throughput in terms of bytes/time

- Throughput in terms of packets/time

- Latency

Shared Memory Switch

• 1st Generation – like a regular PC

I/O bus

Interface 1

Interface 2

Interface 3

CPU

Main memory

Shared Bus Switch

• 2st Generation
– NIC has own processor, cache of forwarding table
– Shared bus, doesn’t have to go to main memory

I/O bus

Interface 1

Interface 2

Interface 3

CPU

Main memory

Point to Point Switch

• 3rd Generation: overcomes single-bus bottleneck
• Example: Cross-bar switch

– Any input-output permutation
– Multiple inputs to same output requires trickery
– Cisco 12000 series: 60Gbps

Cut through vs. Store and Forward

• Two approaches to forwarding a packet
– Receive a full packet, then send to output port
– Start retransmitting as soon as you know output port, before full

packet

• Cut-through routing can greatly decrease latency
• Disadvantage

– Can waste transmission (classic optimistic approach)
• CRC may be bad
• If Ethernet collision, may have to send runt packet on output link

Buffering

• Buffering of packets can happen at input ports, fabric,
and/or output ports

• Consider FIFO + input port buffering
– Only one packet per output port at any time
– If multiple packets arrive for port 2, they may block packets to

other ports that are free
2

21

Port 1

Port 2

* For independent, uniform traffic, with same-size frames

Head-of-Line Blocking

• Solution: Virtual Output Queueing
– Each input port has n FIFO queues, one for each output
– Switch using matching in a bipartite graph
– Shown to achieve 100% throughput*

1262 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 47, NO. 8, AUGUST 1999

(a) (b)

Fig. 2. Define as an undirected graph connecting the set of vertices with the set of edges . The edge connecting vertices
and has an associated weight denoted . Graph is bipartite if the set of inputs and outputs
partition such that every edge has one end in and one end in . Matching on is any subset of such that no two edges in have a
common vertex. A maximum matching algorithm is one that finds the matching with the maximum total size or total weight. (a) Example of
for and . (b) Example of matching on .

necessarily desirable. First, under admissible traffic, it can
lead to instability and unfairness, particularly for nonuniform
traffic patterns. To demonstrate this behavior, Fig. 3 shows
an example of a potentially unstable 3 3 switch with just
four active flows,3 and scheduled using the maximum size
matching algorithm. It is assumed that ties are broken by
selecting among alternatives with equal probability. Arrivals
to the switch are i.i.d. Bernoulli arrivals and each flow has
arrivals at rate , where . Even though the
traffic is admissible, it is straightforward to show that the
switch can be unstable for sufficiently small . Consider the
event that at slot , both and have arrivals
with probability and ,
in which case input 1 receives service with probability 2/3.
Therefore, the total rate at which input 1 receives service is
at most

But the arrival rate to input 1 is , so if

(which holds for), then the switch is unstable and
the traffic cannot be sustained by the maximum size matching
algorithm.
Second, under inadmissible traffic, the maximum size

matching algorithm can lead to starvation. An example of
this behavior is shown in Fig. 4 for a 2 2 switch. It is
clear that because all three queues are permanently occupied,

3 It can also be shown that a 2 2 switch with nonuniform traffic can be
unstable when scheduled using a maximum size matching algorithm. However,
our proof is more complex and is omitted here.

Fig. 3. An example of instability under admissible traffic using a maximum
size matching algorithm for a 3 3 switch with nonuniform traffic.

Fig. 4. Under an inadmissible workload, the maximum size matching will
always serve just two queues, starving the flow from input 1 to output 1.

the algorithm will always select the “cross” traffic: input 1 to
output 2 and input 2 to output 1. It is worth noting that the
practical scheduling algorithms described previously attempt
to approximate a maximum size matching [1], [2], [4], [14],
[22]. It is therefore not surprising that these algorithms perform
well when the traffic is uniform, but perform less well when
the traffic is nonuniform.

IV. MAXIMUM WEIGHT MATCHINGS
The maximum weight matching for a bipartite graph

is one that maximizes and can be found
by solving an equivalent network flow problem. The most
efficient known algorithm for solving this problem converges
in running time [20].

*MCKEOWN et al.: ACHIEVING 100% THROUGHPUT IN AN INPUT-QUEUED SWITCH, 1999

2

21

Port 1

Port 2

Current Developments

• Switches are becoming programmable
– Custom protocols, encapsulation, metering, monitoring

• Current speeds reach 12.8Tbps (32x400Gbps or
256x50Gbps) on a single programmable switching chip

IPv4

Ethernet

END

END

IP route

Ethertype

Src MAC Dst MAC
Action: Set
output port

Action: Send
to controller

Action: Set src/dst MAC,
decrement IP TTL

1 2 32…Stage:

TC
AM

R
AM

Table Flow GraphParse Graph Memory Allocation

(a) L2/L3 switch.

Legend

{Ethertype}

{RCP}

{Dst IP}

{Src Port, Src MAC}

{Dst MAC}

{Src/Dst IP,
 IP Proto,
 Src/Dst Port}

Tables

Logical flow

Drop packet
Forward to buffer

Table Flow Graph

IPv4

RCP

TCP UDP

Ethernet

IP route

Ethertype

Src MAC Dst MAC

RCP
ACL

Action: Set src/dst MAC, decrement
IP TTL, insert OMPLS header (opt.),

set src/dst IP (opt.)

Action: Set
queue ID

Action: Clear
output port Action: Update

RCP rate

Action: Set output port,
insert OMPLS header (opt.)

Action: Send
to controller

31 321 2 30…Stage:

TCAM
RAM

Table Flow GraphParse Graph Memory Allocation

(b) RCP and ACL support.

Figure 2: Switch configuration examples.

...

Input Ch. 1

Input Ch. 64

...
Ingress

Deparser

Match
Stage

1

Match
Stage

32
...Ingress

Parsers

Ingress processing

Common data buffer

queues

packet
data

packet
pointer

(enqueue)

packet
pointer

(dequeue)

packet
data

...
Egress

Deparser

Match
Stage

1

Match
Stage

32
...Egress

Parsers

Egress processing

...

Output Ch. 1

Output Ch. 64

Figure 3: Switch chip architecture.

Figure 3. Note that this closely resembles the RMT archi-
tectural diagram of Figure 1a.

Input signals are received by 64 channels of 10Gb SerDes
(serializer-deserializer) IO modules. 40G channels are made
by ganging together groups of four 10G ports. After pass-
ing through modules which perform low level signalling and
MAC functions like CRC generation/checking, input data is
processed by the parsers. We use 16 ingress parser blocks
instead of the single logical parser shown in Figure 1a be-
cause our programmable parser design can handle 40Gb of
bandwidth, either four 10G channels or a single 40G one.

Parsers accept packets where individual fields are in vari-
able locations, and output a fixed 4 Kb packet header vector,
where each parsed field is assigned a fixed location. The lo-
cation is static, but configurable. Multiple copies of fields
(e.g., multiple MPLS tags or inner and outer IP fields) are
assigned unique locations in the packet header vector.

The input parser results are multiplexed into a single
stream to feed the match pipeline, consisting of 32 sequen-
tial match stages. A large shared bu↵er provides storage to

accommodate queuing delays due to output port oversub-
scription; storage is allocated to channels as required. De-
parsers recombine data from the packet header vector back
into each packet before storage in the common data bu↵er.
A queuing system is associated with the common data

bu↵er. The data bu↵er stores packet data, while pointers
to that data are kept in 2K queues per port. Each channel
in turn requests data from the common data bu↵er using
a configurable queuing policy. Next is an egress parser, an
egress match pipeline consisting of 32 match stages, and a
deparser, after which packet data is directed to the appro-
priate output port and driven o↵ chip by 64 SerDes output
channels.
While a separate 32-stage egress processing pipeline seems

like overkill, we show that egress and ingress pipelines share
the same match tables so the costs are minimal. Further,
egress processing allows a multicast packet to be customized
(say for its congestion bit or MAC destination) by port with-
out storing several di↵erent packet copies in the bu↵er. We
now describe each of the major components in the design.

104

We did not cover these…

Medium Access Control

• Control access to shared physical medium
– E.g., who can talk when?
– If everyone talks at once, no one hears anything]

• Two conflicting goals
– Maximize utilization when one node sending
– Approach 1/N allocation when N nodes sending

Different Approaches

• Partitioned Access
– Time Division Multiple Access (TDMA)
– Frequency Division Multiple Access (FDMA)
– Code Division Multiple Access (CDMA)

• Random Access
– ALOHA/ Slotted ALOHA
– Carrier Sense Multiple Access / Collision Detection (CSMA/CD)
– Carrier Sense Multiple Access / Collision Avoidance (CSMA/CA)
– RTS/CTS (Request to Send/Clear to Send)
– Token-based

Ethernet (IEEE 802.3)

• Dominant wired LAN technology
• Original version (1983): 10Mbps
• Now: 1Gbps (1000BASE-T), 10Gbps, …
• CSMA/CD: Carrier Sense / Multiple Access / Collision

Detection
• L1: Manchester encoding

Dest
addr

64 48 32

CRCPreamble Src
addr

Type Body

1648

Ethernet Addressing

Globally unique, 48-bit unicast address per adapter
– Example: 00:1c:43:00:3d:09 (Samsung adapter)
– First 24 bits: Registered to manufacturers
– http://standards.ieee.org/develop/regauth/oui/oui.txt

Other protocols have adopted this address format
(eg. Wifi, Bluetooth, …)
• Nowadays, we call them “mac addresses” or

“hardware addresses”

Dest
addr

64 48 32

CRCPreamble Src
addr

Type Body

1648

http://standards.ieee.org/develop/regauth/oui/oui.txt

Ethernet’s evolution

Originally, a shared medium with all hosts

• Basic idea: all hosts can see all frames, read a frame if it
matches your hardware address

• Implications?

Ethernet MAC: CSMA/CD

• Problem: shared medium, all hosts in the same “collision
domain”

• Transmit algorithm
– If line is idle, transmit immediately
– Upper bound message size of 1500 bytes
– If line is busy: wait until idle and transmit immediately

• Generally possible to detect collisions

When to transmit again?

• Delay and try again: exponential backoff
• nth time: k × 51.2μs, for k = U{0..(2min(n,10)-1)}

– 1st time: 0 or 51.2μs
– 2nd time: 0, 51.2, 102.4, or 153.6μs

• Give up after several times (usually 16)

• Exponential backoff is a useful, general technique

Capture Effect

• Exponential backoff leads to self-adaptive use of channel
• A and B are trying to transmit, and collide
• Both will back off either 0 or 51.2μs
• Say A wins.
• Next time, collide again.

– A will wait between 0 or 1 slots
– B will wait between 0, 1, 2, or 3 slots

• …

Ethernet Recap

• Service provided: send frames among stations with
specific addresses

• Addresses are just names, no topology information
– Special broadcast and multicast addresses

• All nodes in the same “broadcast domain”
– Is this what we want?

Bridges and Extended LANs

• Single Ethernet collision domain has
limitations
– Limits performance, distance, …

• Next step: separate collision domains
with bridges
– Operates on Ethernet addresses
– Forwards packets from one collision

domain to others

• Modern ethernet uses switches: all
hosts directly connected to a bridge

A

Bridge

B C

X Y Z

Port 1

Port 2

Destinations for packets

• Unicast: forward with filtering
• Broadcast: always forward
• Multicast: always forward or learn groups

• Can try to limit how we direct packets to a destination

Learning Bridges/Switches

• Idea: don’t forward a packet where it isn’t needed
– If you know recipient is not on that port

• Learn hosts’ locations based on source addresses
– Build a table as you receive packets
– Table is a cache: if full, evict old entries. Why is this fine?

• Table says when not to forward a packet
– Doesn’t need to be complete for correctness

A

Bridge

B C

X Y Z

Port 1

Port 2

Attack on a Learning Switch

• Eve: wants to sniff all packets sent to Bob
• Same segment: easy (shared medium)
• Different segment on a learning bridge: hard

– Once bridge learns Bob’s port, stop broadcasting

• How can Eve force the bridge to keep broadcasting?
– Flood the network with frames with spoofed src addr!

Coming Up

• Connecting multiple networks: IP and the Network Layer

