
CSCI-1680
Application Interface

Based	
 partly	
 on	
 lecture	
 notes	
 by	
 David	
 Mazières,	
 Phil	
 Levis,	
 John	
 Janno<	

Rodrigo Fonseca

Administrivia

•  Today: Network Programming mini-course!
368, 8-10pm

•  Signup for Snowcast milestone
–  Must sign up for a slot by Fri 3pm
–  http://bit.ly/snowcast12

Review

•  Multiplexing
•  Layering and Encapsulation
•  IP, TCP, UDP

•  Today:
–  Performance Metrics
–  Socket API
–  Concurrent servers

Circuit Switching

•  Guaranteed allocation
–  Time division / Frequency division multiplexing

•  Low space overhead
•  Easy to reason about

•  Failures: must re-establish connection
–  For any failures along path

•  Overload: all or nothing
–  No graceful degradation

•  Waste: allocate for peak, waste for less than peak
•  Set up time

Packet Switching

•  Break information in small chunks: packets
•  Each packet forwarded independently

–  Must add metadata to each packet

•  Allows statistical multiplexing
–  High utilization
–  Very !exible
–  Fairness not automatic
–  Highly variable queueing delays
–  Different paths for each packet

A Taxonomy of networks

Communication
Network

Switched
Communication

Network

Broadcast
Communication

Network

Circuit-Switched
Communication

Network

Packet-Switched
Communication

Network

Datagram
 Network

Virtual Circuit Network

A hybrid of circuits and packets;
headers include a “circuit

identifier” established during a
setup phase

Point-to-point network

Layers, Services, Protocols

•  Last class: layering, separation of concerns

Network	

Link	

Physical	

Transport	

ApplicaBon	

Service:	
 move	
 bits	
 to	
 other	
 node	
 across	
 link	
 	

Service:	
 move	
 frames	
 to	
 other	
 node	
 across	
 link.	

May	
 add	
 reliability,	
 medium	
 access	
 control	

Service:	
 move	
 packets	
 to	
 any	
 other	
 node	
 in	
 the	
 network	

IP:	
 Unreliable,	
 best-­‐effort	
 service	
 model	

Service:	
 mulBplexing	
 applicaBons	

Reliable	
 byte	
 stream	
 to	
 other	
 node	
 (TCP),	
 	

Unreliable	
 datagram	
 (UDP)	

Service:	
 user-­‐facing	
 applicaBon.	

ApplicaBon-­‐defined	
 messages	

Layers, Services, Protocols

Layer	
 N	

Protocol:	
 rules	
 for	
 communicaBon	

within	
 same	
 layer	
 	

Layer	
 N-­‐1	

Layer	
 N+1	

Service:	
 abstracBon	
 provided	
 to	
 layer	
 above	

API:	
 concrete	
 way	
 of	
 using	
 the	
 service	

Layer	
 N	
 uses	
 the	
 services	
 provided	
 by	
 N-­‐1	
 to	

implement	
 its	
 protocol	
 and	
 provide	
 its	
 own	
 services	

Challenge
•  Decide on how to factor the problem

–  What services at which layer?
–  What to leave out?
–  Balance demands,

•  For example:
–  IP offers pretty crappy service, even on top of reliable

links… why?
–  TCP: offers reliable, in-order, no-duplicates service.

Why would you want UDP?

IP as the Narrow Waist

•  Many applications protocols on top of UDP & TCP
•  IP works over many types of networks
•  is is the “Hourglass” architecture of the Internet.

–  If every network supports IP, applications run over many
different networks (e.g., cellular network)

…

FTP

TCP UDP

IP

NET1 NET2 NETn

HTTP NV TFTP

Network Layer: Internet Protocol (IP)

•  Used by most computer networks today
–  Runs over a variety of physical networks, can connect

Ethernet, wireless, modem lines, etc.
•  Every host has a unique 4-byte IP address (IPv4)

–  E.g., www.cs.brown.edu à128.148.32.110
– e network knows how to route a packet to any address

•  Need more to build something like the Web
–  Need naming (DNS)
–  Interface for browser and server soware (next lecture)
–  Need demultiplexing within a host: which packets are for

web browser, Skype, or the mail program?

Inter-process Communication

•  Talking from host to host is great, but we want
abstraction of inter-process communication

•  Solution: encapsulate another protocol within IP

Host

HostHost

Channel

Application

Host

Application

Host

Transport: UDP and TCP

•  UDP and TCP most popular protocols on IP
–  Both use 16-bit port number & 32-bit IP address
–  Applications bind a port & receive traffic on that port

•  UDP – User (unreliable) Datagram Protocol
–  Exposes packet-switched nature of Internet
–  Sent packets may be dropped, reordered, even

duplicated (but there is corruption protection)
•  TCP – Transmission Control Protocol

–  Provides illusion of reliable ‘pipe’ or ‘stream’ between
two processes anywhere on the network

–  Handles congestion and !ow control

Performance Metrics

•  roughput - Number of bits received/unit of time
–  e.g. 10Mbps

•  Goodput - Useful bits received per unit of time
•  Latency – How long for message to cross network

–  Process + Queue + Transmit + Propagation

•  Jitter – Variation in latency

Latency
•  Processing

–  Per message, small, limits throughput
–  e.g. or 120μs/pkt

•  Queue
–  Highly variable, offered load vs outgoing b/w

•  Transmission
–  Size/Bandwidth

•  Propagation
–  Distance/Speed of Light

€

100Mb
s

×
pkt

1500B
×
B
8b

≈ 8,333pkt /s

Bandwidth and Delay

•  How much data can we send during one RTT?
•  E.g., send request, receive "le

Ti
m

e

Request

Response

•  For small transfers, latency more important,
for bulk, throughput more important

Maximizing roughput

•  Can view network as a pipe
–  For full utilization want bytes in !ight ≥ bandwidth × delay
–  But don’t want to overload the network (future lectures)

•  What if protocol doesn’t involve bulk transfer?
–  Get throughput through concurrency – service multiple

clients simultaneously

Bandwidth-delay

Bandwidth

Delay

• Can view network as a pipe
- For full utilization want bytes in flight ≥ bandwidth×delay

- But don’t want to overload the network (future lectures)

• What if protocol doesn’t involve bulk transfer?
- Get throughput through concurrency—service multiple

clients simultaneously

Using TCP/IP

•  How can applications use the network?
•  Sockets API.

–  Originally from BSD, widely implemented (*BSD, Linux,
Mac OS X, Windows, …)

–  Important do know and do once
–  Higher-level APIs build on them

•  Aer basic setup, much like "les

System Calls

•  Problem: how to access resources other then CPU
–  Disk, network, terminal, other processes
–  CPU prohibits instructions that would access devices
–  Only privileged OS kernel can access devices

•  Kernel supplies well-de"ned system call interface
–  Applications request I/O operations through syscalls
–  Set up syscall arguments and trap to kernel
–  Kernel performs operation and returns results

•  Higher-level functions built on syscall interface
–  printf, scanf, gets, all user-level code

File Descriptors

•  Most I/O in Unix done through !le descriptors
–  Integer handles to per-process table in kernel

•  int open(char *path, int flags, ...);!
•  Returns "le descriptor, used for all I/O to "le

Sockets: Communication Between Machines

•  Network sockets are "le descriptors too
•  Datagram sockets: unreliable message delivery

–  With IP, gives you UDP
–  Send atomic messages, which may be reordered or lost
–  Special system calls to read/write: send/recv!

•  Stream sockets: bi-directional pipes
–  With IP, gives you TCP
–  Bytes written on one end read on another
–  Reads may not return full amount requested, must re-read

Error Returns

•  What if open fails? Returns -1 (invalid fd)
•  Most system calls return -1 on failure

–  Speci)c type of error in global int errno!
•  #include <sys/errno.h> for possible values

–  2 = ENOENT “No such)le or directory”
–  13 = EACCES “Permission denied”

•  perror function prints human-readable message
–  perror(“initfile”);!
–  initfile: No such file or directory!

Some operations on File Descriptors
•  ssize_t read (int fd, void *buf, int nbytes);!

–  Returns number of bytes read
–  Returns 0 bytes at end of)le, or -1 on error

•  ssize_t write (int fd, void* buf, int nbytes);!

–  Returns number of bytes written, -1 on error
•  off_t lseek (int fd, off_t offset, int

whence);!

–  whence: SEEK_SET, SEEK_CUR, SEEK_END!
–  returns new offset, or -1 on error

•  int close (int fd);!
•  int fsync (int fd);!

–  Guarantees that)le contents is stably on disk

•  See type.c

/* type.c */!
#include <stdio.h>!
#include <stdlib.h>!
#include <unistd.h>!
#include <fcntl.h>!
!
void typefile (char *filename) {!
 int fd, nread;!
 char buf[1024];!
!
 fd = open (filename, O_RDONLY);!
 if (fd == -1) {!
 perror (filename);!
 return;!
 }!
 while ((nread = read (fd, buf, sizeof (buf))) > 0)!
 write (1, buf, nread);!
!
 close (fd);!
}!
!
int main (int argc, char **argv) {!
 int argno;!
 for (argno = 1; argno < argc; argno++)!
 typefile (argv[argno]);!
 exit (0);!
}!
!

System calls for using TCP

Client Server
 socket – make socket
 bind – assign address, port
 listen – listen for clients

socket – make socket
bind* – assign address
connect – connect to listening socket

 accept – accept connection

•  is call to bind is optional, connect can choose address & port.

Socket Naming
•  Recall how TCP & UDP name communication

endpoints
–  IP address speci)es host (128.148.32.110)
–  16-bit port number demultiplexes within host
–  Well-known services listen on standard ports (e.g. ssh – 22,

http – 80, mail – 25, see /etc/services for list)
–  Clients connect from arbitrary ports to well known ports

•  A connection is named by 5 components
–  Protocol, local IP, local port, remote IP, remote port
–  TCP requires connected sockets, but not UDP

Socket Address Structures
•  Socket interface supports multiple network types
•  Most calls take a generic sockaddr:

struct sockaddr {!
 uint16_t sa_family; /* address family */!
 char sa_data[14]; /* protocol-specific addr */!
};!

•  E.g. int connect(int s, struct sockaddr* srv, !
 socklen_t addrlen);!

•  Cast sockaddr * from protocol-speci"c struct, e.g.,
struct sockaddr_in { !
!short sin_family; /* = AF_INET */ !
!u_short sin_port; /* = htons (PORT) */ !
!struct in_addr sin_addr; /*32-bit IPv4 addr */!
!chars ! in_zero[8];!

}; !

Dealing with Address Types

•  All values in network byte order (Big Endian)
–  htonl(), htons(): host to network, 32 and 16 bits
–  ntohl(), ntohs(): network to host, 32 and 16 bits
–  Remember to always convert!

•  All address types begin with family
–  sa_family in sockaddr tells you actual type

•  Not all addresses are the same size
–  e.g., struct sockaddr_in6 is typically 28 bytes, yet

generic struct sockaddr is only 16 bytes
–  So most calls require passing around socket length
–  New sockaddr_storage is big enough

Client Skeleton (IPv4) Client interface
struct sockaddr_in {

short sin_family; /* = AF_INET */

u_short sin_port; /* = htons (PORT) */

struct in_addr sin_addr;

char sin_zero[8];

} sin;

int s = socket (AF_INET, SOCK_STREAM, 0);

bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (13); /* daytime port */

sin.sin_addr.s_addr = htonl (IP_ADDRESS);

connect (s, (sockaddr *) &sin, sizeof (sin));

while ((n = read (s, buf, sizeof (buf))) > 0)

write (1, buf, n);

Server Skeleton (IPv4) Server interface
int s = socket (AF_INET, SOCK_STREAM, 0);

struct sockaddr_in sin;

bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (9999);

sin.sin_addr.s_addr = htonl (INADDR_ANY);

bind (s, (struct sockaddr *) &sin, sizeof (sin));

listen (s, 5);

for (;;) {

socklen_t len = sizeof (sin);

int cfd = accept (s, (struct sockaddr *) &sin, &len);

/* cfd is new connection; you never read/write s */

do_something_with (cfd);

close (cfd);

}

Looking up a socket address with getaddrinfo
struct addrinfo hints, *ai;!
int err;!
memset (&hints, 0, sizeof (hints)); !
hints.ai_family = AF_UNSPEC; /* or AF_INET or AF_INET6 */!
hints.ai_socktype = SOCK_STREAM;/* or SOCK_DGRAM for UDP */!
!
err = getaddrinfo ("www.brown.edu", "http", &hints, &ai);!
if (err)!
 fprintf (stderr, "%s\n", gia_strerror (err)); !
else {!
 /* ai->ai_family = address type (AF_INET or AF_INET6) */!
 /* ai->ai_addr = actual address cast to (sockaddr *) */ !
 /* ai->ai_addrlen = length of actual address */ !
 freeaddrinfo (ai); /* must free when done! */!
}!

getaddrinfo() [RFC3493]

•  Protocol-independent node name to address
translation
–  Can specify port as a service name or number
–  May return multiple addresses
–  You must free the structure with freeaddrinfo

•  Other useful functions to know about
–  getnameinfo – Lookup hostname based on address
–  inet_ntop – Convert IPv4 or 6 address to printable
–  Inet_pton – Convert string to IPv4 or 6 address

A Fetch-Store Server
•  Client sends command, gets response over TCP
•  Fetch command (“fetch\n”):

–  Response has contents of last stored)le

•  Store command (“store\n”):
–  Server stores what it reads in)le
–  Returns OK or ERROR

•  What if server or network goes down during store?
–  Don’t say “OK” until data is safely on disk

•  See fetch_store.c!

EOF in more detail

•  What happens at end of store?
–  Server receives EOF, renames)le, responds OK
–  Client reads OK, aer sending EOF: didn’t close fd

•  int shutdown(int fd, int how);!
–  Shuts down a socket w/o closing)le descriptor
–  how: 0 = read, 1 = write, 2 = both
–  Note: applies to socket, not descriptor, so copies of

descriptor (through fork or dup affected)
–  Note 2: with TCP, can’t detect if other side shuts for

reading

Using UDP

•  Call socket with SOCK_DGRAM, bind as before
•  New calls for sending/receiving individual packets

–  sendto(int s, const void *msg, int len, int flags,
const struct sockaddr *to, socklen t tolen);!

–  recvfrom(int s, void *buf, int len, int flags,
struct sockaddr *from, socklen t *fromlen);!

–  Must send/get peer address with each packet
•  Example: udpecho.c!
•  Can use UDP in connected mode (Why?)

–  connect assigns remote address
–  send/recv syscalls, like sendto/recvfrom w/o last two

arguments

Uses of UDP Connected Sockets

•  Kernel demultiplexes packets based on port
–  Can have different processes getting UDP packets from

different peers
•  Feedback based on ICMP messages (future lecture)

–  Say no process has bound UDP port you sent packet to
–  Server sends port unreachable message, but you will only

receive it when using connected socket

Creating/Monitoring Processes

•  pid_t fork(void);!

–  Create new process that is exact copy of current one
–  Returns twice!
–  In parent: process ID of new process
–  In child: 0

•  pid_t waitpid(pid_t pid, int *stat, int opt);!

–  pid – process to wait for, or -1 if any
–  stat – will contain status of child
–  opt – usually 0 or WNOHANG!

Fork example

 switch (pid = fork ()) {!
 case -1:!
 perror ("fork");!
 break;!
 case 0:!
 doexec ();!
 break;!
 default:!
 waitpid (pid, NULL, 0);!
 break;!

Deleting Processes

•  void exit(int status);!
–  Current process ceases to exist
–  Status shows up on waitpid (shied)
–  By convention, status of 0 is success, non-zero error

•  int kill (int pid, int sig);!
–  Sends signal sig to process pid
–  SIGTERM most common sig, kills process by default

(but application can catch it for “cleanup”)
–  SIGKILL stronger, always kills

Serving Multiple Clients
•  A server may block when talking to a client

–  Read or write of a socket connected to a slow client
can block

–  Server may be busy with CPU
–  Server might be blocked waiting for disk I/O

•  Concurrency through multiple processes
–  Accept, fork, close in parent; child services request

•  Advantages of one process per client
–  Don’t block on slow clients
–  May use multiple cores
–  Can keep disk queues full for disk-heavy workloads

reads

•  One process per client has disadvantages:
–  High overhead – fork + exit ~100μsec
–  Hard to share state across clients
–  Maximum number of processes limited

•  Can use threads for concurrency
–  Data races and deadlocks make programming tricky
–  Must allocate one stack per request
–  Many thread implementations block on some I/O or

have heavy thread-switch overhead
Rough equivalents to fork(), waitpid(), exit(),
kill(), plus locking primitives.

Non-blocking I/O

•  fcntl sets O_NONBLOCK $ag on descriptor
int n;!
if ((n = fcntl(s, F_GETFL)) >= 0)!
!fcntl(s, F_SETFL, n|O_NONBLOCK);!

•  Non-blocking semantics of system calls:
–  read immediately returns -1 with errno EAGAIN if no data
–  write may not write all data, or may return EAGAIN
–  connect may fail with EINPROGRESS (or may succeed, or

may fail with a real error like ECONNREFUSED)
–  accept may fail with EAGAIN or EWOULDBLOCK if no

connections present to be accepted

How do you know when to read/write?

struct timeval {

long tv_sec; /* seconds */

long tv_usec; /* and microseconds */

};

int select (int nfds, fd_set *readfds, fd_set *writefds,

fd_set *exceptfds, struct timeval *timeout);

FD_SET(fd, &fdset);

FD_CLR(fd, &fdset);

FD_ISSET(fd, &fdset);

FD_ZERO(&fdset);

Entire program runs in an event loop.

How do you know when to read/write?

•  Entire program runs in an event loop

Event-driven servers

•  Quite different from processes/threads
–  Race conditions, deadlocks rare
–  Oen more efficient

•  But…
–  Unusual programming model
–  Sometimes difficult to avoid blocking
–  Scaling to more CPUs is more complex

Coming Up

•  Next class: Physical Layer
•  Fri 03: Snowcast milestones

