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Administrivia 

•  Today: Network Programming mini-course! 
368, 8-10pm 

•  Signup for Snowcast milestone 
–  Must sign up for a slot by Fri 3pm 
–  http://bit.ly/snowcast12 



Review 

•  Multiplexing 
•  Layering and Encapsulation 
•  IP, TCP, UDP 

•  Today: 
–  Performance Metrics 
–  Socket API 
–  Concurrent servers 



Circuit Switching 

•  Guaranteed allocation 
–  Time division / Frequency division multiplexing 

•  Low space overhead 
•  Easy to reason about 

•  Failures: must re-establish connection 
–  For any failures along path 

•  Overload: all or nothing 
–  No graceful degradation 

•  Waste: allocate for peak, waste for less than peak 
•  Set up time 



Packet Switching 

•  Break information in small chunks: packets 
•  Each packet forwarded independently 

–  Must add metadata to each packet 

•  Allows statistical multiplexing 
–  High utilization 
–  Very !exible 
–  Fairness not automatic 
–  Highly variable queueing delays 
–  Different paths for each packet 
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Layers, Services, Protocols 

•  Last class: layering, separation of concerns 
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Layers, Services, Protocols 
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Challenge 
•  Decide on how to factor the problem 

–  What services at which layer? 
–  What to leave out? 
–  Balance demands,  

•  For example:  
–  IP offers pretty crappy service, even on top of reliable 

links… why? 
–  TCP: offers reliable, in-order, no-duplicates service. 

Why would you want UDP? 



IP as the Narrow Waist 

•  Many applications protocols on top of UDP & TCP 
•  IP works over many types of networks 
•  is is the “Hourglass” architecture of the Internet.  

–  If every network supports IP, applications run over many 
different networks (e.g., cellular network) 

…
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Network Layer: Internet Protocol (IP) 

•  Used by most computer networks today 
–  Runs over a variety of physical networks, can connect 

Ethernet, wireless, modem lines, etc. 
•  Every host has a unique 4-byte IP address (IPv4) 

–  E.g.,  www.cs.brown.edu à128.148.32.110 
– e network knows how to route a packet to any address 

•  Need more to build something like the Web 
–  Need naming (DNS) 
–  Interface for browser and server soware (next lecture) 
–  Need demultiplexing within a host: which packets are for 

web browser, Skype, or the mail program? 



Inter-process Communication 

•  Talking from host to host is great, but we want 
abstraction of inter-process communication 

•  Solution: encapsulate another protocol within IP 
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Transport: UDP and TCP 

•  UDP and TCP most popular protocols on IP 
–  Both use 16-bit port number & 32-bit IP address 
–  Applications bind a port & receive traffic on that port 

•  UDP – User (unreliable) Datagram Protocol 
–  Exposes packet-switched nature of Internet 
–  Sent packets may be dropped, reordered, even 

duplicated (but there is corruption protection) 
•  TCP – Transmission Control Protocol 

–  Provides illusion of reliable ‘pipe’ or ‘stream’ between 
two processes anywhere on the network 

–  Handles congestion and !ow control 



Performance Metrics 

•  roughput - Number of bits received/unit of time 
–  e.g. 10Mbps 

•  Goodput - Useful bits received per unit of time 
•  Latency – How long for message to cross network 

–  Process + Queue + Transmit + Propagation 

•  Jitter – Variation in latency 



Latency 
•  Processing 

–  Per message, small, limits throughput 
–  e.g.                                                     or 120μs/pkt 

•  Queue 
–  Highly variable, offered load vs outgoing b/w 

•  Transmission 
–  Size/Bandwidth 

•  Propagation 
–  Distance/Speed of Light 
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Bandwidth and Delay 

•  How much data can we send during one RTT? 
•  E.g., send request, receive "le 

Ti
m

e 

Request 

Response 

•  For small transfers, latency more important, 
for bulk, throughput more important 



Maximizing roughput 

•  Can view network as a pipe 
–  For full utilization want bytes in !ight ≥ bandwidth × delay 
–  But don’t want to overload the network (future lectures) 

•  What if protocol doesn’t involve bulk transfer? 
–  Get throughput through concurrency – service multiple 

clients simultaneously 

Bandwidth-delay

Bandwidth

Delay

• Can view network as a pipe
- For full utilization want bytes in flight ≥ bandwidth×delay

- But don’t want to overload the network (future lectures)

• What if protocol doesn’t involve bulk transfer?
- Get throughput through concurrency—service multiple

clients simultaneously



Using TCP/IP 

•  How can applications use the network? 
•  Sockets API.  

–  Originally from BSD, widely implemented (*BSD, Linux, 
Mac OS X, Windows, …) 

–  Important do know and do once 
–  Higher-level APIs build on them 

•  Aer basic setup, much like "les 



System Calls 

•  Problem: how to access resources other then CPU 
–  Disk, network, terminal, other processes 
–  CPU prohibits instructions that would access devices 
–  Only privileged OS kernel can access devices 

•  Kernel supplies well-de"ned system call interface 
–  Applications request I/O operations through syscalls 
–  Set up syscall arguments and trap to kernel 
–  Kernel performs operation and returns results 

•  Higher-level functions built on syscall interface 
–  printf, scanf, gets, all user-level code 



File Descriptors 

•  Most I/O in Unix done through !le descriptors 
–  Integer handles to per-process table in kernel 

•  int open(char *path, int flags, ...);!
•  Returns "le descriptor, used for all I/O to "le 



Sockets: Communication Between Machines 

•  Network sockets are "le descriptors too 
•  Datagram sockets: unreliable message delivery 

–  With IP, gives you UDP 
–  Send atomic messages, which may be reordered or lost 
–  Special system calls to read/write: send/recv!

•  Stream sockets: bi-directional pipes 
–  With IP, gives you TCP 
–  Bytes written on one end read on another 
–  Reads may not return full amount requested, must re-read 



Error Returns 

•  What if open fails? Returns -1 (invalid fd) 
•  Most system calls return -1 on failure 

–  Speci)c type of error  in global int errno!
•  #include <sys/errno.h> for possible values 

–  2 = ENOENT “No such )le or directory” 
–  13 = EACCES “Permission denied” 

•  perror function prints human-readable message 
–  perror(“initfile”);!
–  initfile: No such file or directory!



Some operations on File Descriptors 
•  ssize_t read (int fd, void *buf, int nbytes);!

–  Returns number of bytes read 
–  Returns 0 bytes at end of )le, or -1 on error 

•  ssize_t write (int fd, void* buf, int nbytes);!

–  Returns number of bytes written, -1 on error 
•  off_t lseek (int fd, off_t offset, int 

whence);!

–  whence: SEEK_SET, SEEK_CUR, SEEK_END!
–  returns new offset, or -1 on error 

•  int close (int fd);!
•  int fsync (int fd);!

–  Guarantees that )le contents is stably on disk 

•  See type.c  



/* type.c */!
#include <stdio.h>!
#include <stdlib.h>!
#include <unistd.h>!
#include <fcntl.h>!
!
void typefile (char *filename) {!
  int fd, nread;!
  char buf[1024];!
!
  fd = open (filename, O_RDONLY);!
  if (fd == -1) {!
    perror (filename);!
    return;!
  }!
  while ((nread = read (fd, buf, sizeof (buf))) > 0)!
    write (1, buf, nread);!
!
  close (fd);!
}!
!
int main (int argc, char **argv) {!
  int argno;!
  for (argno = 1; argno < argc; argno++)!
    typefile (argv[argno]);!
  exit (0);!
}!
!



System calls for using TCP 

Client  Server    
   socket – make socket 
   bind – assign address, port 
   listen – listen for clients 

socket – make socket 
bind* – assign address 
connect – connect to listening socket 

   accept – accept connection 
 

•  is call to bind is optional, connect can choose address & port.  



Socket Naming 
•  Recall how TCP & UDP name communication 

endpoints 
–  IP address speci)es host (128.148.32.110) 
–  16-bit port number demultiplexes within host 
–  Well-known services listen on standard ports (e.g. ssh – 22, 

http – 80, mail – 25, see /etc/services for list) 
–  Clients connect from arbitrary ports to well known ports 

•  A connection is named by 5 components 
–  Protocol, local IP, local port, remote IP, remote port 
–  TCP requires connected sockets, but not UDP 



Socket Address Structures 
•  Socket interface supports multiple network types 
•  Most calls take a generic sockaddr: 

struct sockaddr {!
  uint16_t sa_family;   /* address family */!
  char     sa_data[14]; /* protocol-specific addr */!
};!

•  E.g.     int connect(int s, struct sockaddr* srv, !
                         socklen_t addrlen);!

•  Cast sockaddr * from protocol-speci"c struct, e.g., 
struct sockaddr_in { !
!short   sin_family;       /* = AF_INET */ !
!u_short sin_port;         /* = htons (PORT) */ !
!struct  in_addr sin_addr; /*32-bit IPv4 addr */!
!chars ! in_zero[8];!

}; !



Dealing with Address Types 

•  All values in network byte order (Big Endian) 
–  htonl(), htons(): host to network, 32 and 16 bits 
–  ntohl(), ntohs(): network to host, 32 and 16 bits 
–  Remember to always convert! 

•  All address types begin with family 
–  sa_family in sockaddr tells you actual type 

•  Not all addresses are the same size 
–  e.g., struct sockaddr_in6 is typically 28 bytes, yet 

generic  struct sockaddr is only 16 bytes 
–  So most calls require passing around socket length 
–  New sockaddr_storage is big enough 



Client Skeleton (IPv4) Client interface
struct sockaddr_in {

short sin_family; /* = AF_INET */

u_short sin_port; /* = htons (PORT) */

struct in_addr sin_addr;

char sin_zero[8];

} sin;

int s = socket (AF_INET, SOCK_STREAM, 0);

bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (13); /* daytime port */

sin.sin_addr.s_addr = htonl (IP_ADDRESS);

connect (s, (sockaddr *) &sin, sizeof (sin));

while ((n = read (s, buf, sizeof (buf))) > 0)

write (1, buf, n);



Server Skeleton (IPv4) Server interface
int s = socket (AF_INET, SOCK_STREAM, 0);

struct sockaddr_in sin;

bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (9999);

sin.sin_addr.s_addr = htonl (INADDR_ANY);

bind (s, (struct sockaddr *) &sin, sizeof (sin));

listen (s, 5);

for (;;) {

socklen_t len = sizeof (sin);

int cfd = accept (s, (struct sockaddr *) &sin, &len);

/* cfd is new connection; you never read/write s */

do_something_with (cfd);

close (cfd);

}



Looking up a socket address with getaddrinfo  
struct addrinfo hints, *ai;!
int err;!
memset (&hints, 0, sizeof (hints)); !
hints.ai_family = AF_UNSPEC;    /* or AF_INET or AF_INET6 */!
hints.ai_socktype = SOCK_STREAM;/* or SOCK_DGRAM for UDP */!
!
err = getaddrinfo ("www.brown.edu", "http", &hints, &ai);!
if (err)!
   fprintf (stderr, "%s\n", gia_strerror (err)); !
else {!
   /* ai->ai_family = address type (AF_INET or AF_INET6) */!
   /* ai->ai_addr = actual address cast to (sockaddr *) */ !
   /* ai->ai_addrlen = length of actual address */ !
   freeaddrinfo (ai); /* must free when done! */!
}!



getaddrinfo() [RFC3493] 

•  Protocol-independent node name to address 
translation 
–  Can specify port as a service name or number 
–  May return multiple addresses 
–  You must free the structure with freeaddrinfo 

•  Other useful functions to know about 
–  getnameinfo – Lookup hostname based on address 
–  inet_ntop – Convert IPv4 or 6 address to printable 
–  Inet_pton – Convert string to IPv4 or 6 address 



A Fetch-Store Server 
•  Client sends command, gets response over TCP 
•  Fetch command (“fetch\n”): 

–  Response has contents of last stored )le 

•  Store command (“store\n”): 
–  Server stores what it reads in )le 
–  Returns OK or ERROR 

•  What if server or network goes down during store? 
–  Don’t say “OK” until data is safely on disk 

•  See fetch_store.c!



EOF in more detail 

•  What happens at end of store? 
–  Server receives EOF, renames )le, responds OK 
–  Client reads OK, aer sending EOF: didn’t close fd 

•  int shutdown(int fd, int how);!
–  Shuts down a socket w/o closing )le descriptor 
–  how: 0 = read, 1 = write, 2 = both 
–  Note: applies to socket, not descriptor, so copies of 

descriptor (through fork or dup affected) 
–  Note 2: with TCP, can’t detect if other side shuts for 

reading 



Using UDP 

•  Call socket with SOCK_DGRAM, bind as before 
•  New calls for sending/receiving individual packets 

–  sendto(int s, const void *msg, int len, int flags, 
const struct sockaddr *to, socklen t tolen);!

–  recvfrom(int s, void *buf, int len, int flags, 
struct sockaddr *from, socklen t *fromlen);!

–  Must send/get peer address  with each packet 
•  Example: udpecho.c!
•  Can use UDP in connected mode (Why?) 

–  connect assigns remote address 
–  send/recv syscalls, like sendto/recvfrom w/o last two 

arguments 



Uses of UDP Connected Sockets 

•  Kernel demultiplexes packets based on port 
–  Can have different processes getting UDP packets from 

different peers 
•  Feedback based on ICMP messages (future lecture) 

–  Say no process has bound UDP port you sent packet to 
–  Server sends port unreachable message, but you will only 

receive it when using connected socket 



Creating/Monitoring Processes 

•  pid_t fork(void);!

–  Create new process that is exact copy of current one 
–  Returns twice! 
–  In parent: process ID of new process 
–  In child: 0 

•  pid_t waitpid(pid_t pid, int *stat, int opt);!

–  pid – process to wait for, or -1 if any 
–  stat – will contain status of child 
–  opt – usually 0 or WNOHANG!



Fork example 

 switch (pid = fork ()) {!
    case -1:!
      perror ("fork");!
      break;!
    case 0:!
      doexec ();!
      break;!
    default:!
      waitpid (pid, NULL, 0);!
      break;!



Deleting Processes 

•  void exit(int status);!
–  Current process ceases to exist 
–  Status shows up on waitpid (shied) 
–  By convention, status of 0 is success, non-zero error 

•  int kill (int pid, int sig);!
–  Sends signal sig to process pid 
–  SIGTERM most common sig, kills process by default 

(but application can catch it for “cleanup”) 
–  SIGKILL stronger, always kills 



Serving Multiple Clients 
•  A server may block when talking to a client 

–  Read or write of a socket connected to a slow client 
can block 

–  Server may be busy with CPU 
–  Server might be blocked waiting for disk I/O 

•  Concurrency through multiple processes 
–  Accept, fork, close in parent; child services request 

•  Advantages of one process per client 
–  Don’t block on slow clients 
–  May use multiple cores 
–  Can keep disk queues full for disk-heavy workloads 



reads 

•  One process per client has disadvantages: 
–  High overhead – fork + exit ~100μsec 
–  Hard to share state across clients 
–  Maximum number of processes limited 

•  Can use threads for concurrency 
–  Data races and deadlocks make programming tricky 
–  Must allocate one stack per request 
–  Many thread implementations block on some I/O or 

have heavy thread-switch overhead  
Rough equivalents to fork(), waitpid(), exit(), 
kill(), plus locking primitives. 



Non-blocking I/O 

•  fcntl sets O_NONBLOCK $ag on descriptor 
int n;!
if ((n = fcntl(s, F_GETFL)) >= 0)!
!fcntl(s, F_SETFL, n|O_NONBLOCK);!

•  Non-blocking semantics of system calls: 
–  read immediately returns -1 with errno EAGAIN if no data 
–  write may not write all data, or may return EAGAIN 
–  connect may fail with EINPROGRESS (or may succeed, or 

may fail with a real error like ECONNREFUSED) 
–  accept may fail with EAGAIN or EWOULDBLOCK if no 

connections present to be accepted 



How do you know when to read/write?

struct timeval {

long tv_sec; /* seconds */

long tv_usec; /* and microseconds */

};

int select (int nfds, fd_set *readfds, fd_set *writefds,

fd_set *exceptfds, struct timeval *timeout);

FD_SET(fd, &fdset);

FD_CLR(fd, &fdset);

FD_ISSET(fd, &fdset);

FD_ZERO(&fdset);

Entire program runs in an event loop.

How do you know when to read/write? 

•  Entire program runs in an event loop 



Event-driven servers 

•  Quite different from processes/threads 
–  Race conditions, deadlocks rare 
–  Oen more efficient 

•  But… 
–  Unusual programming model 
–  Sometimes difficult to avoid blocking 
–  Scaling to more CPUs is more complex 



Coming Up 

•  Next class: Physical Layer 
•  Fri 03: Snowcast milestones 


