
CSCI-1680
DNS

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti

Administrivia

• TCP milestone I: this week, sign up for a meeting if you haven’t
– If you’re stuck: bring what you have, it does not need to be perfect
– DO NOT just hack stuff together to make it look good in Wireshark

• TCP Gearup II: TONIGHT, 10/31 6-8pm in CIT 368
– Prep for milestone II

• HW3 (short!): Due next Thurs

PREPFOR MILESTONE II

Warmup

Which of the following contribute to congestion?
a. Packets queueing up at switches
b. High CPU usage on the receiver
c. Many TCP connections sending on the same link
d. Many UDP connections sending on the same link
e. An unreliable Wifi link

WITHWORK

FLOW CONTROL

4

De
liv

er
y

ra
te

BDP BDP + BufSize

RT
T

Amount in flight

Thinking about congestion

“BBR congestion control”

IPACKAGENBEING

o

https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf

Congestion Control (CC)
algorithm

Signals from the network
(ACKs, other TCP packet info, more...)

Congestion window: cwnd

Sender can send: min(advertised window, cwnd)
(Advertised window: flow control window from receiver)

The basic principle

Þ Different CC algorithms use different signals, different techniques for
adapting cwnd, but most fit this format

Lots of CC variants designed with different strategies and goals

Network Signals
• Packet loss (“loss-based”)
• Delay/RTT (“delay-based”)
• ”Marks” added on packets by routers

Goals
• Maximize throughput
• Recover from packet loss or high RTT
• Short-long “flows”
• Datacenter-specific (low-latency)

ÞThis is a big research area!

This is just the beginning…

Lots of congestion control schemes, with different strategies/goals:
• Tahoe (1988)
• Reno (1990)
• Vegas (1994): Detect based on RTT
• New Reno: Better recovery multiple losses
• Cubic (2006): Linux default, window size scales by cubic function
• BBR (2016): Used by Google, measures bandwidth/RTT

CC is a big (and active!) research area! For more on this and other network performance
research, I recommend checking out CSCI 2680.

DNS

You Some site
5.6.7.8

connect(5.6.7.8, 80)

Connecting to a server: the story so far

Is this how users interact with the network? No!

POV: You want to connect to some website

Why not? Why is this bad? You Some site
5.6.7.8

connect(5.6.7.8, 80)

Why can't we just use IP addresses?

Typing them is annoying. What else?

Easy to make mistakes

Would like to have names for "services" => multiple IPs

 => IPs usually depend on where you are located on the network

Client applications don't know IPs of server

Why not? Why is this bad? You Some site
5.6.7.8

connect(5.6.7.8, 80)

• Need to know IP addresses!
– Users won’t know
– Hosts don’t know—can’t remember every single one!

• Some host ?= its IP address? No!
– A large website may be run by many servers
– Devices may move between networks

IP addresses
• Used by routers to forward packets
• Fixed length, binary numbers
• Assigned based on where host is on the network
• Usually refers to one host

Examples
• 5.6.7.8
• 212.58.224.138
• 2620:6e:6000:900:c1d:c9f7:8a1c:2f48

What we have

Efficient forwarding: ✅
Human readable: ❌
Scalable for distributed services: ❌

=> Need a new abstraction for “stuff” we are trying to access

You

Server for
website.com

5.6.7.8

connect(“website.com”, 80)

What we want: a new abstraction for names

connect(5.6.7.8, 80)

DECOUPLE NAME OF

HIT OR SERFS
FROMTHE IP

You

Server for
website.com

5.6.7.8

connect(“website.com”, 80)

What we want: a new abstraction for names

Want: names
 - Human-readable
 - Variable length
 - Don’t need to care about where destination is/what server it is
 => Can refer to a service, not just a host

connect(5.6.7.8, 80)

What does this mean?

cs.brown.edu => 128.148.32.110

SERVICE THING

DNS

Why?

 -

What does this mean?

cs.brown.edu => 128.148.32.110

Why?
• Names are easier to remember
• Addresses can change underneath

– e.g, renumbering when changing providers
• Useful Multiplexing/sharing

– One name -> multiple addresses
– Multiple names -> one address

Remember ARP?
IP address => Link-layer address

Now: DNS
Names useful to users/applications => IP addresses

Another change in layers => which enables so much more….

13 L2

WHOHAS GOOGLE.COM 1.2.3.4
QUESTION ANSWER

The original way: one file: hosts.txt
• Flat namespace
• Central administrator kept master copy (for the Internet)
• To add a host, emailed admin
• Downloaded file regularly

IPNAME METADATA
AUTHORITY

The original way: one file: hosts.txt
• Flat namespace
• Central administrator kept master copy (for the Internet)
• To add a host, emailed admin
• Downloaded file regularly

Does it scale?
Lol no.

Domain Name System (DNS)
Originally proposed by RFC882, RFC883 (1983)

Distributed protocol to translate hostnames -> IP addresses
– Human-readable names
– Delegated control
– Load-balancing/content delivery
– So much more…

=> Distributed key-value store, before it was cool…

High level DNS goals

 Scalability: need to be able to have a huge number of
"records" (mappings from names => addrs)

 - Lots of queries to look up names

 - Lots of updates (#updates << #queries)

 Distributed control: need to let people/organizations control their own
names

Redundancy/fault tolerance:

 Redundant way to do lookups, provide records

Some properties about the system that make this possible:

 - Loose consistency: when changing records, not a huge deal if it takes
a while to propagate (several minutes)

 - Read-mostly database: writes generally infrequent, we can use lots
and lots and lots of caching

The good news

Compared to other distributed systems, some properties that make these
goals easier to achieve…

1. Read-mostly database
Lookups MUCH more frequent than updates

2. Loose consistency
When adding a machine, not end of the world if it takes minutes or hours to propagate

Can use lots and lots of caching
– Once you’ve lookup up a hostname, remember
– Don’t have to look again in the near future

How it works
Hierarchical namespace broken into zones

cslab1a.cs.brown.edu

MANAGEDBYORG ROOT

T 8h TOPLEVEL
HOSTNAME NAME OF DOMAINS

SOME
ORIENTITY

ONE HOST
SERVER SUBDOMAIN

How it works

Hierarchical namespace broken into zones

cslab1a.cs.brown.edu

MANAGEDBY
MAFFEL

REGISTRARS

poot

FETTSUBDOMAIN TOP LEVEL DOMAIN
TLD

HOSTNAME
NAME OF

ONE HOSTSERVICE SOME ORGENTITY

edu com

princeton … mit

cs ee

ux01 ux04

physics

cisco … yahoo nasa … nsf arpa … navy acm … ieee

gov mil org net uk fr

How it works

• Hierarchical namespace broken into zones
– root (.), edu., brown.edu., cs.brown.edu.,
– Zones separately administered => delegation
– Parent zone tells you how to find servers for subdomains

• Each zone served from multiple replicated servers
• Lots and lots of caching

edu com

princeton … mit

cs ee

ux01 ux04

physics

cisco … yahoo nasa … nsf arpa … navy acm … ieee

gov mil org net uk fr

DNS Example
$ dig cs.brown.edu @10.1.1.10
; <<>> DiG 9.10.6 <<>> cs.brown.edu @10.1.1.10
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 8536
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1220
;; QUESTION SECTION:
;cs.brown.edu. IN A

;; ANSWER SECTION:
cs.brown.edu. 1800 IN A 128.148.32.12

;; Query time: 69 msec
;; SERVER: 10.1.1.10#53(10.1.1.10)
;; WHEN: Tue Apr 19 09:03:39 EDT 2022
;; MSG SIZE rcvd: 57

NAMESERVERTOASK

TTL SECONDS HOWLONG
TOCACHERECORD

RESULT TYPE

HowLONG Y ANSWER
CANHAVEMULTIPLE

(This is a typical, recursive-style query
(more on what this means later))

Types of DNS servers

 - "authoritative servers" : servers that "own" records for some
domain (e.g. cs.brown.edu)

 - Resolvers: you (or another server" queries this to look up
names, tries to get closer to authoritative server

 => in most cases, you interact with a resolver, it contacts an
authoritative server if it doesn't know the answer

 => These are basically caches

How A DNSQUERY WORKS ITERATIVE

NO CACHING
VERSION

Roof
HOST LOCAL
Qicsuas.esBrown.eu

Resaufif
hheaum

BROWN.EDUAT

EDU

qq.iq
qgyfKyggggggg n

RESPONSES

FOR LATER T.IT IEnu
BROWNONAMESERVER

success A CSLABIA CS.BROWN.EDU

28 98x CSDEPT AUTHORITATIVE
NAMESERVER FOR CSBROWNIE

HOSTASKS LOCAL RESOLVER
RESOLVER STARTS RECURSIVE QUERY FROM ROOT
203040INTERMEDIATE NAMESERVERS DON'THAVE ANSWER
BUTRESPOND W NEXTSERVER THATKNOWSMORE

FOUND SERVERW AUTHORITATIVE ANSWER

RECURSIVE DNS QUERIES
MORE COMMON

Host

A CBrown Eno 7914 f leg.tl

CLOSEST
RESOLVER

1 44
EDU BROWN

ROOT ONLY IF NOT
CALHEDMore commonly, hosts perform recursive queries to larger DNS servers, which do the

typical iteration process (from the previous page) on the client’s behalf.

Why? All resolvers cache responses—a larger resolver is more likely to have these
entries in its cache. If the resolver has a valid answer for any of the steps, it can skip
it! (For example, if the nameserver for .edu is cached but cs.brown.edu is not, the
local resolver can skip skeps 2-3.

Who provides the closest resolver?

 - Many OSes have a resolver on the local system, which acts as a local cache

 - Usually, every local network has its own resolver (Brown, your home router, etc)

 - These local resolvers MIGHT do iterative queries, but often do another recursive
step to a big public DNS server (like Google's 8.8.8.8, or Cloudflare's 1.1.1.1)

 => Multiple levels of caching!

HOST

APP E

Doesn't ITERATE
JUST A CACHE

CLOSEST

i
dEE

19
ROUT EDU

a s

HOST USUALLY DOESN'T ITERATE

APP HE JUST A CACHE

CLOSEST COULD

HÑ ALSOUSE
RECURSION
INSTEAD

BIG PUBLIC DNS CACHE

SERVER
6 88.8.8 600647 11.1.1 CF

19
ROUT EDU

a s

Resolver operation

• Apps make recursive queries to local DNS
server (1)
– Ask server to get answer for you

• Server makes iterative queries to remote
servers (2,4,6)
– Ask servers who to ask next
– Cache results aggressively

DNS software architecture

• Two types of query
- Recursive
- Non-Recursive

• Apps make recursive queries to
local DNS server (1)

• Local server queries remote
servers non-recursively (2, 4, 6)

- Aggressively caches result
- E.g., only contact root on first query

ending .umass.edu

$ dig cs.brown.edu @e.root-servers.net

; <<>> DiG 9.10.6 <<>> cs.brown.edu @e.root-servers.net
[. . .]
;; QUESTION SECTION:
;cs.brown.edu. IN A

;; AUTHORITY SECTION:
edu. 172800 IN NS b.edu-servers.net.
edu. 172800 IN NS i.edu-servers.net.
edu. 172800 IN NS g.edu-servers.net.
[. . .]

;; ADDITIONAL SECTION:
[. . .]
i.edu-servers.net. 172800 IN A 192.43.172.30
g.edu-servers.net. 172800 IN A 192.42.93.30
b.edu-servers.net. 172800 IN A 192.33.14.30

;; Query time: 123 msec
;; SERVER: 2001:500:a8::e#53(2001:500:a8::e)
;; WHEN: Thu Oct 31 08:29:45 EDT 2024
;; MSG SIZE rcvd: 839

ASK ROOT NAMESERVER

Quint
No answer, but try these authoritative
servers (for .edu)

Additional records: "BTW, here are the IPs for
those other nameservers to try"

=> These are called "glue records" (needed because
resolving b.edu-servers.net would otherwise require
another DNS query, and possibly have a circular
dependency)

Iterative query: step 1

$dig cs.brown.edu @192.33.14.30. [192.33.14.30 was IP returned for b.edu-servers.net]

; <<>> DiG 9.10.6 <<>> cs.brown.edu @192.33.14.30
[. . .]
;; QUESTION SECTION:
;cs.brown.edu. IN A

;; AUTHORITY SECTION:
brown.edu. 172800 IN NS ns1.ucsb.edu.
brown.edu. 172800 IN NS bru-ns1.brown.edu.
brown.edu. 172800 IN NS bru-ns2.brown.edu.
brown.edu. 172800 IN NS bru-ns3.brown.edu.

;; ADDITIONAL SECTION:
ns1.ucsb.edu. 172800 IN A 128.111.1.1
ns1.ucsb.edu. 172800 IN AAAA 2607:f378::1
bru-ns1.brown.edu. 172800 IN A 128.148.248.11
bru-ns2.brown.edu. 172800 IN A 128.148.248.12
bru-ns3.brown.edu. 172800 IN A 128.148.2.13

EDU

TYPLEETERS

Iterative query: step 2

$ dig cs.brown.edu @128.111.1.1 [128.111.1.1 was IP returned for ns1.ucsb.edu]
; <<>> DiG 9.10.6 <<>> cs.brown.edu @128.111.1.1
[. . .]

;; QUESTION SECTION:
;cs.brown.edu. IN A

;; ANSWER SECTION:
cs.brown.edu. 1800 IN A 128.148.32.12

;; Query time: 77 msec
;; SERVER: 128.111.1.1#53(128.111.1.1)
;; WHEN: Thu Oct 31 08:35:11 EDT 2024
;; MSG SIZE rcvd: 57

ANSWER

Where is the root server?

• Located in New York
• How do we make the root scale?

Verisign, New York, NY

DNS Root Servers

• 13 Root Servers (www.root-servers.org)
– Labeled A through M (e.g, A.ROOT-SERVERS.NET)

• Does this scale?

B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA

E NASA Mt View, CA
F Internet Software
 Consortium
 Palo Alto, CA

K RIPE London

M WIDE Tokyo

A Verisign, New York, NY
C Cogent, Herndon, VA
D U Maryland College Park, MD
G US DoD Columbus, OH
H ARL Aberdeen, MD
J Verisign I Netnod, Stockholm

ANTCAST USINGBGP

ADVERTISE IT FROM
MULTIPLE

LOCATIONS

B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA
(plus 157 other locations)

E NASA Mt View, CA (+70)
F Internet Software
 Consortium,
 Palo Alto, CA
 (and 57 other locations)

M WIDE Tokyo
 plus Seoul, Paris,
 San Francisco,
Osaka

A Verisign, New York, NY (also Frankfurt, HK, London, LA)
C Cogent, Herndon, VA (also Los Angeles, NY, Chicago, Frankfurt and 3+)
D U Maryland College Park, MD (also in 106 other locations)
G US DoD Columbus, OH (+5)
H ARL Aberdeen, MD (also San Diego)
J Verisign (118 locations) I Netnod, Stockholm

(plus 49 other locations)

K RIPE London (plus 41 other locations)

DNS Root Servers

• 13 Root Servers (www.root-servers.org)
– Labeled A through M (e.g, A.ROOT-SERVERS.NET)

• Remember anycast?

DNS Root Servers: Today

From: www.root-servers.org

http://www.root-servers.org/

How it scales: caching

Resolvers cache responses to avoid doing recursive/iterative queries
• Many messages => extra computation, extra latency

$ dig cs.brown.edu @10.1.1.10
;; ANSWER SECTION:
cs.brown.edu. 1800 IN A 128.148.32.12

HOWLONG RESULT
SHOULD BE

CACHED ÉÉ
WHEN

$ dig nytimes.com

;; ANSWER SECTION:
nytimes.com. 111 IN A 151.101.65.164
nytimes.com. 111 IN A 151.101.1.164
nytimes.com. 111 IN A 151.101.129.164
nytimes.com. 111 IN A 151.101.193.164

;; Query time: 40 msec
;; SERVER: 10.1.1.10#53(10.1.1.10)
;; WHEN: Thu Nov 09 08:42:41 EST 2023
;; MSG SIZE rcvd: 104

Related: redundant services via DNS
Can return multiple answers for one record
 => If a client can’t connect to first result, can try next one

DNS server usually shuffles answers on each response—why?

LOAD BALANCING

REDUNDANCY

Facebook DNS outage (2021)

BGP configuration bug: Facebook withdraws all routes for its DNS servers to the
Internet
 => Facebook DNS unreachable—not even Facebook could access their systems!

Traffic graph

Many writeups here

https://www.kentik.com/blog/facebooks-historic-outage-explained/
https://en.wikipedia.org/wiki/2021_Facebook_outage

Source

7

IF Éiserver
NOT FOUND

https://commons.wikimedia.org/wiki/File:Facebook_DNS_Outage_2021.png

Reverse DNS

What if we want to map IP address => domain name?

Leverages hierarchy in IP addresses, but in reverse
 => How? reverse the numbers: 12.32.148.128, then look that up

1281148 3.2.12

Reverse DNS

How do we get the other direction, IP address to name?
• Addresses have a natural hierarchy:

– 128.148.32.12

• Idea: reverse the numbers: 12.32.148.128 …
– and look that up in DNS

• Under what TLD?
– Convention: in-addr.arpa
– Lookup 12.32.148.128.in-addr.arpa
– in6.arpa for IPv6

DNS record types
RR Type Purpose Example

A IPv4 Address 128.148.56.2

AAAA IPv6 Address 2001:470:8956:20::1

CNAME Specifies an alias
(“Canonical name”)

systems.cs.brown.edu. 86400 IN
 CNAME systems-v3.cs.brown.edu.
systems-v3.cs.brown.edu. 86400 IN A 128.148.36.51

NS DNS servers for a domain cs.brown.edu. 86400 IN NS br1.brown.edu

MX Mail servers MX <priority> <ip>
eg. MX 10 1.2.3.4

SOA Start of authority Information about who owns a zone

PTR Reverse IP lookup 7.34.148.128.in-addr.arpa. 86400 IN
 PTR quanto.cs.brown.edu.

SRV How to reach specific
services (eg. host, port)

_minecraft._tcp.example.net 3600
 SRV <priority> <weight> <port> <server IP>

More: https://en.wikipedia.org/wiki/List_of_DNS_record_types

https://en.wikipedia.org/wiki/List_of_DNS_record_types

 Next time:

 - What can go wrong?

 - How can DNS help applications scale?

