
CSCI-1680
DNS II + WWW

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti

Administrivia

• TCP grading: sign up for a grading meeting
– Let us know if you don’t see any slots

• Final project: you should have received an email about teams
• Project proposal: due by Monday, 12/5

– Really not much required, just sketch what you want to do and your plan
– I’ll review these daily: submit earlier => earlier feedback!

• There will be a short HW5
• My office hours today: 3-4pm (CIT316, zoom), 5-7pm (location TBA)

More on DNS

DNS Example
$ dig cs.brown.edu @10.1.1.10
; <<>> DiG 9.10.6 <<>> cs.brown.edu @10.1.1.10
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 8536
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1220
;; QUESTION SECTION:
;cs.brown.edu. IN A

;; ANSWER SECTION:
cs.brown.edu. 1800 IN A 128.148.32.12

;; Query time: 69 msec
;; SERVER: 10.1.1.10#53(10.1.1.10)
;; WHEN: Tue Apr 19 09:03:39 EDT 2022
;; MSG SIZE rcvd: 57

DNS record types

RR Type Purpose Example

A IPv4 Address 128.148.56.2

AAAA IPv6 Address 2001:470:8956:20::1

CNAME Specifies an alias
(“Canonical name”)

systems.cs.brown.edu. 86400 IN
CNAME systems-v3.cs.brown.edu.

systems-v3.cs.brown.edu. 86400 IN A 128.148.36.51

MX Mail servers MX <priority> <ip>
eg. MX 10 1.2.3.4

SOA Start of authority Information about who owns a zone

PTR Reverse IP lookup 7.34.148.128.in-addr.arpa. 86400 IN
PTR quanto.cs.brown.edu.

SRV How to reach specific
services (eg. host, port)

_minecraft._tcp.example.net 3600
SRV <priority> <weight> <port> <server IP>

More: https://en.wikipedia.org/wiki/List_of_DNS_record_types

https://en.wikipedia.org/wiki/List_of_DNS_record_types

“Helpful” ISPs

Some ISPs hijack DNS for “helpful” purposes
• Could rewrite NXDOMAIN responses => search page with ads

– oogle.com => ISP search page

• Captive portals: When joining public Wifi, respond to all DNS queries with
IP of login page
– Most OSes/browsers have mechanisms to detect this

What can be done?

Some defenses against DNS spoofing/hijacking

What can be done?

Some defenses against DNS spoofing/hijacking
• DNSSEC: protocol to sign/verify hierarchy of DNS lookups

– Expensive to deploy, hierarchy must support at all levels
– APNIC DNSSEC monitor: https://stats.labs.apnic.net/dnssec
– https://www.internetsociety.org/resources/deploy360/2012/nist-ipv6-and-dnssec-

statistics-6/

• Tunneling DNS: client uses DNS via more secure protocol
– DNS over HTTPS
– DNS over TLS

https://stats.labs.apnic.net/dnssec
https://www.internetsociety.org/resources/deploy360/2012/nist-ipv6-and-dnssec-statistics-6/

HTTP: Hypertext Transfer Protocol

HTTP

• “Application protocol for distributed, collaborative hypermedia information
systems”

• Fundamental protocol behind “the web”

• Today, HTTP is fundamental of most things we do on the Internet… and thus
most modern applications

But what is hypertext?

Hypertext predates HTTP

1945: Vannevar Bush envisions the “Memex”:
– “a device in which an individual stores all his books, records, and communications, and which is

mechanized so that it may be consulted with exceeding speed and flexibility”

• Precursors to hypertext
– “The human mind [...] operates by association. With one item in its grasp, it snaps

instantly to the next that is suggested by the association of thoughts, in accordance with
some intricate web of trails carried by the cells of the brain”

• His essay, “As we may think”, is worth reading!

Tim Berners-Lee

• Physicist at CERN, trying to solve real problem
– Distributed access to data

• WWW: distributed database of pages linked through the Hypertext Transfer
Protocol
– First HTTP implementation: 1990
– HTTP/0.9 – 1991

• Simple GET command
– HTTP/1.0 – 1992

• Client/server information, simple caching
– HTTP/1.1 – 1996

• Extensive caching support
• Host identification
• Pipelined, persistent connections, …

The first webserver

• HTTP/2 – 2015
– Main goal: reduce latency
– True multiplexing of messages
– Binary encoding, compression

• HTTP/3 – 2022
– Same goals as HTTP/2
– Integrates security via TLS (next class…)
– Replace transport layer with QUIC
– Already supported in >70% of browsers

http://httpwg.org/specs/rfc7540.html

Why so successful?

• Ability to self publish
– Like youtube for video

• But…
– Mechanism is easy
– Independent, open
– Free

• Current debate
– Is it easy enough? Why is facebook so popular, even though it is not open?

Components

• Content
– Objects (may be static or dynamically generated)

• Clients
– Send requests / Receive responses

• Servers
– Receive requests / Send responses
– Store or generate content

• Proxies/Middleboxes
– Placed between clients and servers
– Provide extra functions

• Caching, anonymization, logging, transcoding, filtering access
– Explicit or transparent

Ingredients

• HTTP
– Hypertext Transfer Protocol

• HTML
– Language for description of content

• Names (mostly URLs)
– Won’t talk about URIs, URNs

How to find stuff?

• DNS: names for one or more hosts
– eg. cs.brown.edu

• How do we ask for a specific resource from this host?

URL: Uniform Resource Locator

How to find stuff: URLs

protocol://[name@]hostname[:port]/directory/resource?k1=v1&k2=v2#tag

• Name: can identify a client
• Hostname: FQDN or IP address
• Port number: defaults to common protocol port (eg. 80, 22)
• Directory: path to the resource
• Resource: name of the object
• After that, various delimiters to specify further, common examples:

– ?parameters are passed to the server for execution
– #tag allows jumps to named tags within document

How to find stuff: URLs

protocol://[name@]hostname[:port]/directory/resource?k1=v1&k2=v2#tag

HTTP

• Client-server protocol
• Protocol (but not data) in ASCII (before HTTP/2)
• Stateless
• Extensible (header fields)
• Server typically listens on port 80 (or 443, with TLS)
• Server sends response, may close connection (client may ask it to say open)

Steps in HTTP(1.0) Request

• Open TCP connection to server
• Send request
• Receive response
• TCP connection terminates

– How many RTTs for a single request?

• You may also need to do a DNS lookup first!

> telnet www.cs.brown.edu 80
Trying 128.148.32.110...
Connected to www.cs.brown.edu.
Escape character is '^]'.
GET / HTTP/1.0

HTTP/1.1 200 OK
Date: Thu, 24 Mar 2011 12:58:46 GMT
Server: Apache/2.2.9 (Debian) mod_ssl/2.2.9 OpenSSL/0.9.8g
Last-Modified: Thu, 24 Mar 2011 12:25:27 GMT
ETag: "840a88b-236c-49f3992853bc0"
Accept-Ranges: bytes
Content-Length: 9068
Vary: Accept-Encoding
Connection: close
Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en”>

HTTP Request

• Method:
– GET: current value of resource, run program
– HEAD: return metadata associated with a resource
– POST: update a resource, provide input for a program

• Headers: useful info for proxies or the server
– E.g., desired language

HTTP Request Format

method URL version ��

header field name value ��

header field name value ��

��

request

headers

body

blank line

• Request types: GET, POST, HEAD, PUT, DELETE

• A URL given to browser: http://localhost:8000/

• Resulting request: GET / HTTP/1.1

- Someday, requests will contain the full URL not just path

Sample Browser Request

GET / HTTP/1.1
Host: localhost:8000
User-Agent: Mozilla/5.0 (Macinto ...
Accept: text/xml,application/xm ...
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
(empty line)

In your browser: Inspect element -> Network view

HTTP Response

Status Codes:
– 1xx: Information e.g, 100 Continue
– 2xx: Success e.g., 200 OK
– 3xx: Redirection e.g., 302 Found (elsewhere)
– 4xx: Client Error e.g., 404 Not Found
– 5xx: Server Error e.g, 503 Service UnavailableHTTP Response Format

version status code phrase ��

header field name value ��

header field name value ��

��

status

headers

body

blank line

• 1xx codes: Informational

• 2xx codes: Successes

• 3xx codes: Redirection

• 4xx codes: Client Error

• 5xx codes: Server Error

HTTP is Stateless

• Each request/response treated independently
• Servers not required to maintain state
• This is good!

– Improves server scalability

• This is also bad…
– Most applications need some persistent state
– Need to uniquely identify user to customize content
– E.g., shopping cart, web-mail, usage tracking, (most sites today!)

HTTP Cookies

• Client-side state maintenance
– Client stores small state on behalf of server
– Sends request in future requests to the server
– Cookie value is meaningful to the server (e.g., session id)

• Can provide authentication
1. Request

2. Response
Set-Cookie: XYZ

3. Request
Cookie: XYZ

ServerClient

Anatomy of a Web Page

• HTML content
• A number of additional resources

– Images
– Scripts
– Frames

• Browser makes one HTTP request for each object
– Course web page: 14 objects
– Modern web pages: hundreds of objects

Modern web pages and HTTP

• Web APIs: HTTP response/requests are a standard way to ask for anything
• Modern web pages: use Javascript to make lots of requests without

reloading page
– And can use APIs for all kinds of other stuff

Example: Github public API
$ curl https://api.github.com/users/ndemarinis
{
"login": "ndemarinis",
"id": 1191319,
"node_id": "MDQ6VXNlcjExOTEzMTk=",
"avatar_url": "https://avatars.githubusercontent.com/u/1191319?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ndemarinis",
"type": "User",
"site_admin": false,
"name": "Nick DeMarinis",
"blog": "https://vty.sh",
"twitter_username": null,
"public_repos": 10,
. . .
}

HTTP

> telnet www.cs.brown.edu 80
Trying 128.148.32.110...
Connected to www.cs.brown.edu.
Escape character is '^]'.
GET / HTTP/1.0

HTTP/1.1 200 OK
Date: Thu, 24 Mar 2011 12:58:46 GMT
Server: Apache/2.2.9 (Debian) mod_ssl/2.2.9 OpenSSL/0.9.8g
Last-Modified: Thu, 24 Mar 2011 12:25:27 GMT
ETag: "840a88b-236c-49f3992853bc0"
Accept-Ranges: bytes
Content-Length: 9068
Vary: Accept-Encoding
Connection: close
Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en”>

HTTP: What matters for performance?

Depends on type of request
– Lots of small requests (objects in a page)
– Some big requests (large download or video)

Small Requests

• Latency matters
• RTT dominates
• Major steps:

– DNS lookup (if not cached)
– Opening a TCP connection
– Setting up TLS (optional, but now common)
– Actually sending the request and receiving response

How can we reduce the number of connection setups?

• Keep the connection open and request all objects serially
– Works for all objects coming from the same server
– Which also means you don’t have to “open” the window each time

Persistent connections (HTTP/1.1)

Browser Request

GET / HTTP/1.1
Host: localhost:8000
User-Agent: Mozilla/5.0 (Macinto ...
Accept: text/xml,application/xm ...
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive

Small Requests (cont)

• Second problem is that requests are serialized
– Similar to stop-and-wait protocols!

• Two solutions
– Pipelined requests (similar to sliding windows)
– Parallel Connections

• Browsers implement this differently—see “Inspect element”

– How are these two approaches different?

HTTP/2

• Adds more options to trade off:
• Multiplexed streams on same connection

– Plus stream weights, dependencies

• No head of line blocking!
– But what happens if there is packet loss?

https://www.twilio.com/blog/2017/10/http2-issues.html

HTTP/3

• Mapping of HTTP semantics onto QUIC
– E.g., QUIC already implements multiple streams, and HTTP doesn’t need to do it

• QUIC: Another transport-layer protocol, intended to replace TCP
– RFC9000
– Same goals as TCP, but…
– Integrates security by default (TLS, next class)
– Supports multiple streams at once
– Various tricks to reduce message size and latency

• By moving multiplexing into the transport layer, can do so in a way that
benefits HTTP (no head of line blocking!)

Comparison: QUIC’s handshake

Larger Objects

• Problem is throughput in bottleneck link
• Solution: HTTP Proxy Caching

– Also improves latency, and reduces server load

Big Requests

• Problem is throughput on edge link

• Use an HTTP proxy cache
- Can also improve latency!

clients

server

Internet

proxy

cache

How to Control Caching?

• Server sets options
– Expires header
– No-Cache header

• Client can do a conditional request:
– Header option: if-modified-since
– Server can reply with 304 NOT MODIFIED

Caching

• Where to cache content?
– Client (browser): avoid extra network transfers
– Server: reduce load on the server
– Service Provider: reduce external traffic

Server

Clients

Backbone ISP

ISP-1 ISP-2

Caching

• Why caching works?
– Locality of reference:

• Users tend to request the same object in succession
• Some objects are popular: requested by many users

Server

Clients

Backbone ISP

ISP-1 ISP-2

How well does caching work?

• Very well, up to a point
– Large overlap in requested objects
– Objects with one access place upper bound on hit ratio
– Dynamic objects not cacheable*

• Example: Wikipedia
– About 400 servers, 100 are HTTP Caches (Squid)
– 85% Hit ratio for text, 98% for media

* But can cache portions and run special code on edges to reconstruct

Reverse Proxies

Close to the server
– Also called Accelerators
– Only work for static content

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies

Forward Proxies

Typically done by ISPs or Enterprises
– Reduce network traffic and decrease latency
– May be transparent or configured

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies

Forward proxies

Content Distribution Networks

• Integrate forward and reverse caching
– One network generally administered by one entity
– E.g. Akamai

• Provide document caching
– Pull: result from client requests
– Push: expectation of high access rates to some objects

• Can also do some processing
– Deploy code to handle some dynamic requests
– Can do other things, such as transcoding

Example CDN

Clients

ISP-1

Server

Forward proxies

Backbone ISP

ISP-2

CDN

How Akamai works

Akamai has cache servers deployed close to clients
– Co-located with many ISPs

• Challenge: make same domain name resolve to a proxy close to the client
• Lots of DNS tricks. BestBuy is a customer

– Delegate name resolution to Akamai (via a CNAME)

DNS Resolution

dig www.bestbuy.com
;; ANSWER SECTION:
www.bestbuy.com. 3600 IN CNAME www.bestbuy.com.edgesuite.net.
www.bestbuy.com.edgesuite.net. 21600 IN CNAME a1105.b.akamai.net.

a1105.b.akamai.net. 20 IN A 198.7.236.235
a1105.b.akamai.net. 20 IN A 198.7.236.240
;; AUTHORITY SECTION:
b.akamai.net. 1101 IN NS n1b.akamai.net.

b.akamai.net. 1101 IN NS n0b.akamai.net.
;; ADDITIONAL SECTION:
n0b.akamai.net. 1267 IN A 24.143.194.45
n1b.akamai.net. 2196 IN A 198.7.236.236

• n1b.akamai.net finds an edge server close to the client’s local
resolver
• Uses knowledge of network: BGP feeds, traceroutes. Their secret sauce…

Example

From Brown
dig www.bestbuy.com
;; ANSWER SECTION:
www.bestbuy.com. 3600 IN CNAME www.bestbuy.com.edgesuite.net.
www.bestbuy.com.edgesuite.net. 21600 IN CNAME a1105.b.akamai.net.
a1105.b.akamai.net. 20 IN A 198.7.236.235
a1105.b.akamai.net. 20 IN A 198.7.236.240

– Ping time: 2.53ms

From Berkeley, CA
a1105.b.akamai.net. 20 IN A 198.189.255.200
a1105.b.akamai.net. 20 IN A 198.189.255.207

– Ping time: 3.20ms

Example
dig www.bestbuy.com
;; QUESTION SECTION:
;www.bestbuy.com. IN A

;; ANSWER SECTION:
www.bestbuy.com. 2530 IN CNAME www.bestbuy.com.edgekey.net.
www.bestbuy.com.edgekey.net. 85 IN CNAME e1382.x.akamaiedge.net.
e1382.x.akamaiedge.net. 16 IN A 104.88.86.223

;; Query time: 6 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Thu Nov 16 09:43:11 2017
;; MSG SIZE rcvd: 123

traceroute to 104.88.86.223 (104.88.86.223), 64 hops max, 52 byte packets
1 router (192.168.1.1) 2.461 ms 1.647 ms 1.178 ms
2 138.16.160.253 (138.16.160.253) 1.854 ms 1.509 ms 1.462 ms
3 10.1.18.5 (10.1.18.5) 1.886 ms 1.705 ms 1.707 ms
4 10.1.80.5 (10.1.80.5) 4.276 ms 6.444 ms 2.307 ms
5 lsb-inet-r-230.net.brown.edu (128.148.230.6) 1.804 ms 1.870 ms 1.727 ms
6 131.109.200.1 (131.109.200.1) 2.841 ms 2.587 ms 2.530 ms
7 host-198-7-224-105.oshean.org (198.7.224.105) 4.421 ms 4.523 ms 4.496 ms
8 5-1-4.bear1.boston1.level3.net (4.53.54.21) 4.099 ms 3.974 ms 4.290 ms
9 * ae-4.r00.bstnma07.us.bb.gin.ntt.net (129.250.66.93) 4.689 ms 4.109 ms

10 ae-6.r24.nycmny01.us.bb.gin.ntt.net (129.250.4.114) 8.863 ms 10.205 ms 10.477 ms
11 ae-1.r08.nycmny01.us.bb.gin.ntt.net (129.250.5.62) 9.298 ms

ae-1.r07.nycmny01.us.bb.gin.ntt.net (129.250.3.181) 10.008 ms 8.677 ms
12 ae-0.a00.nycmny01.us.bb.gin.ntt.net (129.250.3.94) 8.543 ms 7.935 ms

ae-1.a00.nycmny01.us.bb.gin.ntt.net (129.250.6.55) 9.836 ms
13 a104-88-86-223.deploy.static.akamaitechnologies.com (104.88.86.223) 9.470 ms 8.483
ms 8.738 ms

dig www.bestbuy.com @109.69.8.51

e1382.x.akamaiedge.net. 12 IN A 23.60.221.144

traceroute to 23.60.221.144 (23.60.221.144), 64 hops max, 52 byte packets
1 router (192.168.1.1) 44.072 ms 1.572 ms 1.154 ms
2 138.16.160.253 (138.16.160.253) 2.460 ms 1.736 ms 2.722 ms
3 10.1.18.5 (10.1.18.5) 1.841 ms 1.649 ms 3.348 ms
4 10.1.80.5 (10.1.80.5) 2.304 ms 15.208 ms 2.895 ms
5 lsb-inet-r-230.net.brown.edu (128.148.230.6) 1.784 ms 4.744 ms 1.566 ms
6 131.109.200.1 (131.109.200.1) 3.581 ms 5.866 ms 3.238 ms
7 host-198-7-224-105.oshean.org (198.7.224.105) 4.288 ms 6.218 ms 8.332 ms
8 5-1-4.bear1.boston1.level3.net (4.53.54.21) 4.209 ms 6.103 ms 5.031 ms
9 ae-4.r00.bstnma07.us.bb.gin.ntt.net (129.250.66.93) 3.982 ms 5.824 ms 4.514 ms
10 ae-6.r24.nycmny01.us.bb.gin.ntt.net (129.250.4.114) 9.735 ms 12.442 ms 8.689 ms
11 ae-9.r24.londen12.uk.bb.gin.ntt.net (129.250.2.19) 81.098 ms 81.343 ms 81.120 ms
12 ae-6.r01.mdrdsp03.es.bb.gin.ntt.net (129.250.4.138) 102.009 ms 110.595 ms 103.010
ms
13 81.19.109.166 (81.19.109.166) 99.426 ms 93.236 ms 101.168 ms
14 a23-60-221-144.deploy.static.akamaitechnologies.com (23.60.221.144) 94.884 ms 92.779
ms 93.281 ms

http://www.bestbuy.com/

Other CDNs

• Akamai, Limelight, Cloudflare
• Amazon, Facebook, Google, Microsoft
• Netflix
• Where to place content?
• Which content to place? Pre-fetch or cache?

