• TCP grading meetings this week (Wed-Fri): Look for email today
• Final project out
 – Fill out group assignment form by tonight (11/29) by 11:59pm
 – You can keep your current group, or switch
• Return to PLQs
• Grades on projects sent out soon
How it works

Hierarchical namespace broken into zones

cslab1a.cs.brown.edu
DNS Architecture

• Hierarchy of DNS servers
 – Root servers
 – Top-level domain (TLD) servers
 – Authoritative DNS servers

• Two “types” of DNS servers (may overlap)
 – Authoritative servers: “owners” of certain DNS records
 – Resolvers: process lookups, caches authoritative records
How a resolver works
Resolver operation

- Apps make **recursive** queries to local DNS server (1)
 - Ask server to get answer for you
- Server makes **iterative** queries to remote servers (2, 4, 6)
 - Ask servers who to ask next
 - Cache results aggressively
Where is the root server?

- Located in New York
- How do we make the root scale?

Verisign, New York, NY
DNS Root Servers

• 13 Root Servers (www.root-servers.org)
 – Labeled A through M (e.g, A.ROOT-SERVERS.NET)
• Does this scale?
DNS Root Servers

- 13 Root Servers (www.root-servers.org)
 - Labeled A through M (e.g., A.ROOT-SERVERS.NET)
- Remember anycast?

A Verisign, New York, NY (also Frankfurt, HK, London, LA)
C Cogent, Herndon, VA (also Los Angeles, NY, Chicago, Frankfurt and 3+)
D U Maryland College Park, MD (also in 106 other locations)
G US DoD Columbus, OH (+5) K RIPE London (plus 41 other locations)
H ARL Aberdeen, MD (also San Diego)
J Verisign (118 locations)
I Netnod, Stockholm (plus 49 other locations)
M WIDE Tokyo plus Seoul, Paris, San Francisco, Osaka

E NASA Mt View, CA (+70)
F Internet Software Consortium, Palo Alto, CA (and 57 other locations)
B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA (plus 157 other locations)
“Types” of DNS servers

• Top Level Domain (TLD) servers
 – Generic domains (e.g., com, org, edu)
 – Country domains (e.g., uk, br, tv, in, ly)
 – Special domains (e.g., arpa)
 – Corporate domains (...)

• Authoritative DNS servers
 – Provides public records for hosts at an organization
 – Can be maintained locally or by a service provider

• Recursive resolvers
 – Big public servers, or local to a network
 – Lots of caching
DNS Caching

- Recursive queries are expensive
- Caching greatly reduces overhead
 - Top level servers very rarely change
 - Popular sites visited often
 - Local DNS server caches information from many users
- How long do you store a cached response?
 - Original server tells you: TTL entry
 - Server deletes entry after TTL expires
Reverse DNS

How do we get the other direction, IP address to name?

• Addresses have a natural hierarchy:
 – 128.148.32.12

• Idea: reverse the numbers: 12.32.148.128 …
 – and look that up in DNS

• Under what TLD?
 – Convention: in-addr.arpa
 – Lookup 12.32.148.128.in-addr.arpa
 – in6.arpa for IPv6
DNS Protocol

- TCP/UDP port 53
- Most traffic uses UDP
 - Lightweight protocol has 512 byte message limit
 - Retry using TCP if UDP fails (e.g., reply truncated)
- Bit in query determines if query is recursive
$ dig cs.brown.edu @10.1.1.10
; <<>> DiG 9.10.6 <<>> cs.brown.edu @10.1.1.10
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 8536
;; flags: qr aa rd ra QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1220
;; QUESTION SECTION:
.cs.brown.edu. IN A

;; ANSWER SECTION:
cs.brown.edu. 1800 IN A 128.148.32.12

;; Query time: 69 msec
;; SERVER: 10.1.1.10#53(10.1.1.10)
;; WHEN: Tue Apr 19 09:03:39 EDT 2022
;; MSG SIZE rcvd: 57
Example

dig . ns

dig +norec www.cs.brown.edu @a.root-servers.net

dig +norec www.cs.brown.edu @a.edu-servers.net

dig +norec www.cs.brown.edu @bru-ns1.brown.edu

www.cs.brown.edu. 86400 IN A 128.148.32.110
Resource Records

All DNS info represented as resource records (RR)

\[
\text{name [ttl] [class] type rdata}
\]

- name: domain name
- TTL: time to live in seconds
- class: for extensibility, normally IN (1) “Internet”
- type: type of the record
- rdata: resource data dependent on the type

- **Example RRs**
 - www.cs.brown.edu. 86400 IN A 128.148.32.110
 - cs.brown.edu. 86400 IN NS dns.cs.brown.edu.
 - cs.brown.edu. 86400 IN NS ns1.ucsb.edu.
DNS record types

<table>
<thead>
<tr>
<th>RR Type</th>
<th>Purpose</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>IPv4 Address</td>
<td>128.148.56.2</td>
</tr>
<tr>
<td>AAAA</td>
<td>IPv6 Address</td>
<td>2001:470:8956:20::1</td>
</tr>
<tr>
<td>CNAME</td>
<td>Specifies an alias ("Canonical name")</td>
<td>systems.cs.brown.edu. 86400 IN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>systems-v3.cs.brown.edu. 86400 IN A 128.148.36.51</td>
</tr>
<tr>
<td>MX</td>
<td>Mail servers</td>
<td>MX <priority> <ip></td>
</tr>
<tr>
<td></td>
<td></td>
<td>eg. MX 10 1.2.3.4</td>
</tr>
<tr>
<td>SOA</td>
<td>Start of authority</td>
<td>Information about who owns a zone</td>
</tr>
<tr>
<td>PTR</td>
<td>Reverse IP lookup</td>
<td>7.34.148.128.in-addr.arpa. 86400 IN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTR quanto.cs.brown.edu.</td>
</tr>
<tr>
<td>SRV</td>
<td>How to reach specific services (eg. host, port)</td>
<td>_minecraft._tcp.example.net 3600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SRV <priority> <weight> <port> <server IP></td>
</tr>
</tbody>
</table>

Some important details

• How do local servers find root servers?
 – DNS lookup on a.root-servers.net?
 – Servers configured with root cache file
 – Contains root name servers and their addresses

 . 3600000 IN NS A.ROOT-SERVERS.NET.
 A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4

 ...

• How do you get addresses of other name servers?
 – To obtain the address of www.cs.brown.edu, ask a.edu-servers.net, says a.root-servers.net
 – How do you find a.edu-servers.net?
 – Glue records: A records in parent zone
Other uses of DNS

• Local multicast DNS
 – Used for service discovery
 – Made popular by Apple
 – This is how you learn of different Apple TVs in the building

• Load balancing

• CDNs (more on this later)
Reliability

• Answers may contain several alternate servers
• Try alternate servers on timeout
 – Exponential backoff when retrying same server
• Use same identifier for all queries
 – Don’t care which server responds, take first answer
Inserting a Record in DNS

Your new startup helpme.com
Inserting a Record in DNS

• Your new startup helpme.com
• Get a block of addresses from ISP
 – Say 212.44.9.0/24
• Register helpme.com at namecheap.com (for ex.)
 – Provide name and address of your authoritative name server (primary and secondary)
 – Registrar inserts RR pair into the .com TLD server:
 • helpme.com NS dns1.helpme.com
 • dns1.helpme.com A 212.44.9.120
• Configure your authoritative server (dns1.helpme.com)
 – Type A record for www.helpme.com
 – Type MX record for helpme.com
Inserting a Record in DNS, cont

• Need to provide reverse PTR bindings
 – E.g., 212.44.9.120 -> dns1.helpme.com
• Configure your dns server to serve the 9.44.212.in-addr.arpa zone
 – Need to add a record of this NS into the parent zone (44.212.in-addr.arpa)
• Insert the bindings into the 9.44.212.in-addr.arpa zone
DNS Security

• You go to starbucks, how does your browser find www.google.com?
 – Ask local name server, obtained from DHCP

• Can you trust this DNS server?
Great Firewall of CIT

If attacker is on the path (say, it is the ISP, or a malicious version of TStaff), what could they do?

– Can sniff all DNS queries
– Send fake responses back first
– Could do this selectively, to direct facebook.com to cs.brown.edu, for example…
Great Firewall of CIT

If attacker is on the path (say, it is the ISP, or a malicious version of TStaff), what could they do?
Public DNS

Public DNS resolvers provided by cloud companies and ISPs
- 8.8.8.8 (Google)
- 1.1.1.1 (Cloudflare)
- ... and others

Why do this?
DNS: 8.8.8.8
Kısa alternatif: 8.8.4.4
“Helpful” ISPs

• Many ISPs hijack NXDOMAIN responses to “help” by offering search and advertisement related to the domain
 E.g., www.bicycleisntadomain.com doesn’t (currently) exist
 – Could return a page with search and ads on bicycles (or domain registrations?)
What can be done?

Some defenses against DNS spoofing/hijacking
What can be done?

Some defenses against DNS spoofing/hijacking

• DNSSEC: protocol to sign/verify hierarchy of DNS lookups
 – Expensive to deploy, hierarchy must support at all levels
 – APNIC DNSSEC monitor: https://stats.labs.apnic.net/dnssec

• Tunneling DNS: client uses DNS via more secure protocol
 – DNS over HTTPS
 – DNS over TLS
More on DNS
Structure of a DNS Message

- Same format for queries and replies
 - Query has 0 RRs in Answer/Authority/Additional
 - Reply includes question, plus has RRs
- Authority allows for delegation
- Additional for glue, other RRs client might need
Header format

- **Id**: match response to query; **QR**: 0 = query, 1 = response
- **RCODE**: error code.
- **AA**: authoritative answer, **TC**: truncated,
- **RD**: recursion desired, **RA**: recursion available

<table>
<thead>
<tr>
<th>ID</th>
<th>QR</th>
<th>Opcode</th>
<th>AA</th>
<th>TC</th>
<th>RD</th>
<th>RA</th>
<th>Z</th>
<th>RCODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **QR** – 0 = query, 1 = response
- **RCODE** – error code
- **AA** = authoritative answer, **TC** = truncated,
- **RD** = recursion desired, **RA** = recursion available
Other RR Types

- **CNAME (canonical name):** specifies an alias

  ```
  www.l.google.com. 300 IN A 72.14.204.147
  ```

- **MX record:** specifies servers to handle mail for a domain (the part after the @ in email addr)
 - Different for historical reasons

- **SOA (start of authority)**
 - Information about a DNS zone and the server responsible for the zone

- **PTR (reverse lookup)**

  ```
  7.34.148.128.in-addr.arpa. 86400 IN PTR quanto.cs.brown.edu.
  ```