CSCI1680 Network Layer: IP & Forwarding

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazières, Phil Levis, John Jannotti ¹

Administivia

- Snowcast: was due last night
- IP Project: Out later today/tomorrow (Sep 30)
 - Fill out group preference form by 11:59pm tomorrow (Sep 30)
- HW2: Announcement soon
 - Stuff we've covered + warmup for IP!

Today

Start of network layer

- Network layer: Internet Protocol (IP) (v4)
- Mechanics of IP forwarding
- Intro to IP project

Bridges and Extended LANs

- Single Ethernet collision domain has limitations
 - Limits performance, distance, ...
- Next step: separate collision domains with bridges
 - Operates on Ethernet addresses
 - Forwards packets from one collision domain to others
- Modern ethernet uses <u>switches</u>: all hosts directly connected to a bridge

MONE SWITCHING CHALLENGER - DEALING W/ LOUPS - LINE-RATE FORWARDING... - MORE LATER!

Layers, Services, Protocols

	Application	Service: user-facing application. Application-defined messages
	Transport	Service: multiplexing applications Reliable byte stream to other node (TCP), Unreliable datagram (UDP)
\neg	Network	Service: move packets to any other node in the network Internet Protocol (IP)
22	Link	Service: move frames to other node across link. May add reliability, medium access control
	Physical	Service: move bits to other node across link

Internet Protocol (IP) Goals

How to connect everyone?

- Glue lower-level networks together
- A network of networks!

Internet Protocol (IP) Goals

How to connect everyone?

- Glue lower-level networks together
- A network of networks!
- Router: device that forwards packets between networks

Internet Protocol (IP) Goals

How to connect everyone?

- Glue lower-level networks together
- A network of networks!
- Router: device that forwards packets between networks

Doesn't this sound like switching?

Inter-networking Challenges

- Networks are heterogeneous (eg. Wifi vs. Ethernet)
 - Different frame formats
 - Different service models
 - Different packet sizes/bandwidths

Inter-networking Challenges

- Networks are heterogeneous (eg. Wifi vs. Ethernet)
 - Different frame formats
 - Different service models
 - Different packet sizes/bandwidths
- Scaling
 - Link-layer forwarding strategies don't scale to Internet! / AN < 1000

Color Chart North America (ARIN) Europe (RIPE) Asia Pacific (APNIC) Latin America (LANIC) Africa (AFRINIC) Backbone US Military

A Bit of History

- Packet switched networks: <u>Arpanet's IMPs</u>
 - Late 1960's
 - RFC 1, 1969!
 - Segmentation, framing, routing, reliability, reassembly, primitive flow control
- Network Control Program (NCP)
 - Provided connections, flow control
 - Assumed reliable network: IMPs
 - Used by programs like telnet, mail, file transfer

A Bit of History

- Packet switched networks: Arpanet's IMPs
 - Late 1960's
 - RFC 1, 1969!
 - Segmentation, framing, routing, reliability, reassembly, primitive flow control
- Network Control Program (NCP)
 - Provided connections, flow control
 - Assumed reliable network: IMPs
 - Used by programs like telnet, mail, file transfer
- Wanted to connect multiple networks
 - Not all reliable, different formats, etc...

Abb. 4 ARPA NETwork, topologische Karte. Stand Juni 1974.

How would you design such a protocol?

Circuits or packets?
 – Predictability

CIRCJIT SWIJWING -NODES DELIDE PATH BEFORCHUM PACKET SWITCHING _ LEST STATE. BREAK MESSAGES INTO PACKETS, EACH NODE DECIDOS WHAT TO DO

How would you design such a protocol?

- Circuits or packets?
 - Predictability
- What service model?
 - Reliability, timing, bandwidth guarantees

How would you design such a protocol?

- Circuits or packets?
 - Predictability
- What service model?
 - Reliability, timing, bandwidth guarantees
- How to enable connectivity?
 - How do you find a particular host?
 - How do you get a message there?
 - What happens when a host joins/leaves?

1974: TCP/IP Introduced

- Vint Cerf, Robert Kahn build protocol to replace NCP
- Initial design: single protocol providing a unified reliable pipe

1974: TCP/IP Introduced

- Vint Cerf, Robert Kahn build protocol to replace NCP
- Initial design: single protocol providing a unified reliable Ø pipe
- Different requirements soon emerged, and the two were ٠ TERM FOR "MESCAGE" AT NETWORK Lisyen separated
 - IP: basic datagram service among hosts
 - TCP: reliable transport
 - UDP: unreliable multiplexed datagram service

Circuits or packets? Packets.
 BOUTENS DON'T NEED YO REMBER
 REN CONNECTION STATE.

- Circuits or packets? Packets.
- Service model?
 - Lowest common denominator: best effort, connectionless
 datagram

- Circuits or packets? Packets.
- Service model?
 - Lowest common denominator: best effort, connectionless datagram
- Enabling connectivity?
 - IP header: common message format
 - IP address: each host has an address, based on hierarchical structure of network

An excellent read

David D. Clark, "The design Philosophy of the DARPA Internet Protocols", 1988

- Primary goal: multiplexed utilization of existing interconnected networks
- Other goals:
 - Communication continues despite loss of networks or gateways
 - Support a variety of communication services
 - Accommodate a variety of networks
 - Permit distributed management of its resources
 - Be cost effective
 - Low effort for host attachment
 - Resources must be accountable

Internet Protocol

IP runs on all hosts and routers

- Provides addressing: how we name nodes in an IP network
- Provides <u>forwarding</u>: how routers move packets based on the destination address
- Later: routing: how routers build forwarding rules

IP's Service Model

- Connectionless (datagram-based)
- Best-effort delivery (unreliable service)
 - packets may be lost
 - packets may be delivered out of order
 - duplicate copies of packets may be delivered
 - packets may be delayed for a long time
- It's the lowest common denominator
 - A network that delivers no packets fits the bill!
 - All these can be dealt with above IP (if probability of delivery is non-zero...)

- (AN NANDLE NETWORKS OF DIFF TYPER,

- LOUTERS CAN BE SIMPLE SCA

IP Version 4: Each address is a 32-bit number: 1

128.148.16.7

1000000, 10010100, 00010000, 00000111

128.148.16.7

IP Addressing 128 Bits

IP Version 4: Each address is a 32-bit number: 128.148.16.7

OCTUTION 128.148.16.7 THINK AROUT THIC LIKE IT REFENS TO ONE NOST 10000000 10010100 00010000 00000111 232 POSSIBLE ADORESSES Z 4 BILLION Notation Write each byte ("octet") as a decimal number POSSIBLE 1/2 18 This is called "dotted decimal" or "dotted quad" notation

128.148.16.7

An IP address identifies...

- Who a host is: A unique number 1212 Where it is on the l
- > BROWN NETWORK

An IP address identifies...

- Who a host is: A unique number
- Where it is on the Internet
- Networks are allocated ranges of IPs by global authority (ICANN)

An IP address identifies...

- Who a host is: A unique number
- Where it is on the Internet
- Networks are allocated ranges of IPs by global authority (ICANN)
 - Further subdivided by regions, ISPs, ...
- Some IPs have special uses (eg. 127.0.0.1)

An IP address identifies...

- Who a host is: A unique number
- Where it is on the Internet
- Networks are allocated ranges of IPs by global authority (ICANN)
 - Further subdivided by regions, ISPs, ...
- Some IPs have special uses (eq. 127.0.0.1)
 eg. Brown owns 128.148.xxx.xxx, 138.16.xxx.xxx

*ICANN (Internet Corporation for Assigned Names and Numbers)

A network can designate IP addresses for its own hosts within its address range

A network can designate IP addresses for its own hosts within its address range

For 128.148.xxx.xxx:

A network can designate IP addresses for its own hosts within its address range

F9r01280148048408783

Common prefixes

123.10.1.0/24

201.112.10.200/30

Example

How do we move packets between networks?

=>FORWARDING.

Assume:

Communicating on same network ٠ is easy—this is the link-layer's job!

Assume:

- Communicating on same network ٠ is easy—this is the link-layer's job!
- Can map IP addresses to MAC ٠ addresses (more on this later)

NI VIA ETHE WI 1.2.1.2	FI, ETC 3
1.2.1.3	1.2.1.1
1.2.1.200	25

Assume:

- Communicating on same network is easy—this is the link-layer's job!
- Can map IP addresses to MAC addresses (more on this later)

How to reach an address outside this network?

Assume:

- Communicating on same network is easy—this is the link-layer's job!
- Can map IP addresses to MAC addresses (more on this later)

How to reach an address outside this Send packets to a <u>router</u>, which <u>forwards</u> IP packets to other networks

29

What about the rest?

How to reach networks that aren't directly connected?

Prefix	Interface
1.2.1.0/24	IF1
1.2.2.0/24	IF2
<everything else=""></everything>	IFO

What about the rest?

DEFAULT F.O.O.Z

- Need "next hop" IP: another router that knows about other networks
 - How to reach it? Check table again!
- "Default gateway": where to send to reach ٠ putting not in the table **IF/Next** hop Prefix 8.0.0.2 1.2.1.0/24 IF1 1.2.2.0/24 IF2 8.0.0.1 IF0 8.0.0/30 IF₀ 1.2.1.0/24 1.2.2.0/24 IF2 128.148.0.0/16 1.2.1.5 32 $\circ \circ \circ \circ$

The forwarding table

Exploits hierarchical structure of addresses: know how to reach <u>networks</u>, not individual hosts

Prefix	IF/Next hop
<u>1.2.1</u> .0/24	IF1
1.2.2.0/24	IF2
8.0.0.0/30	IFO
128.148.0.0/16	1.2.1.5
Default	8.0.0.2

- Table is keyed is a network prenx, not a whole address
- Select best prefix with longest prefix matching (more on this later)

A forwarding table

ip route
127.0.0.0/8 via 127.0.0.1 dev lo
172.17.44.0/24 dev enp7s0 proto kernel scope link src 172.17.44.22 metric 204
default via 172.17.44.1 dev eth0 src 172.17.44.22 metric 204

The IPv4 Header

