Network Programming
Minicourse

ALy

God at His computer

TCP Sockets

* Connection-oriented
— Full two-way data transfer

* Reliable delivery

e Overhead

— Setup, teardown of connections

UDP Sockets

e Connection-less (datagrams)
* Each packet is independent
* Less overhead, not reliable

Creating Sockets

Important Network Structs

struct addrinfo {

int ai_flags;

int ai_family,;

int ai_socktype;
int ai_protocol;
size t ai_addrlen;
struct sockaddr *ai_addr;

char *ai_canonname;

struct addrinfo *ai_next;

Network Structs (cont’d)

// all sockaddr structs are cast to this in network calls that
// call for it.
struct sockaddr {

unsigned short sa family,; // address family, AF_Xxxx

char sa _data[l4]; // 14 bytes of protocol address

b

// used for ipv4.

struct sockaddr_in {
short sin_family;
unsigned short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

getaddrinfo()

int getaddrinfo(const char *node,
const char *service,
const struct addrinfo *hints,
struct addrinfo **servinfo);

* First three parameters are input params
* Fourth parameter will populated by the function
* Gets you the info you need about the remote end of the connection

* servinfo actually simulates a linked list via the ai_next field, but
don’t worry about it; just use servinfo directly as a single addrinfo

struct

Input Parameters

* node : domain name / ip address
— “localhost”, “127.0.0.1"

* service : port
— “5555”, “1337”

* hints : socket configuration options
— hints.ai_family: AF_UNSPEC/AF_INET/AF_INET6

— hints.ai_socktype: SOCK_DGRAM/SOCK_STREAM
* SOCK_DGRAM is UDP, SOCK_STREAM is TCP

— hints.ai_flags: ignore this

Results of Function

* int: actual return value
— used to indicate success / failure

* servinfo : populated by getaddrinfo()
call

— contains the info you need to create a socket

socket ()

int socket(int domain,
int type,
int protocol);
e Takes in configuration parameters
— These will be in servinfo after getaddrinfo ()
— Could also hardcode if you really want

* Reserves a file descriptor

— Used to read/write over the network connection

Input Parameters

e domain
— AF_INET/AF_INET6

— use (*servinfo)->ai_family after servinfo is
populated by getaddrinfo ()

¢ type
— SOCK_STREAM/SOCK DGRAM
— (*servinfo)->ai_socktype

e protocol
— (*servinfo)->ai_protocol

Return Value

File descriptor for connection
Same as a file descriptor for a file on disk
Can read, write, close, shutdown

— More on these in future slides

<0if error

Quick Caveats (apply to all network
functions)

Remember to error check return values
Remember to do any necessary validation

Look at Beej’s Network Programming guide for
examples of error checking

Some code...

//network includes
<sys/types.h>
<sys/socket.h>
<netdb.h>

//misc includes
<string.h>

main (argc, **argv) {
fd;
addrinfo hints, *servinfo;

memset(&hints, 0, hints);
hints.ai_family = AF_UNSPEC; //Don't force ipvé4 or ipvé6
hints.ai_socktype = SOCK_DGRAM; //UDP

//In real code, check your return values for errors!
getaddrinfo(, , &hints, &servinfo);
fd = socket(servinfo->ai_family, servinfo->ai_socktype, servinfo->ai_protocol);

//We now have a file descriptor to the socket

Server-side Calls

bind ()

int bind(int sockfd,
struct sockaddr *myaddr,
int addrlen);

* Reserves a port to listen on, and specifies its
local ip address

— for our purposes, this ip address will always be
localhost (127.0.0.1)

* Connects the socket fd with that reserved port
* Returns <0 on error

Input Parameters

* sockfd

— the file descriptor returned by socket ()
* myaddr

— the ip address and port to bind to

— (*servinfo)->ai_addr
* addrlen

— the length (in bytes) of the ip address
— (*servinfo)->ai_addrlen

listen ()

int listen(int sockfd,
int backlog);

 Tells the socket to listen for connections
e Call after bind () ties the socket to a port
e Returns <0 on error

Input Parameters

e sockfd
— the file descriptor returned from socket ()
— same as passed into b1nd ()

* backlog

— maximum number of waiting connections that will
be queued

— not important for our purposes, > 10 is plenty

accept ()

int accept(int sockfd,
struct sockaddr *addr,
socklen t *addrlen),;

 Called after Listen ()

e Accepts an incoming connection request from
a client process

* Probably the trickiest of the socket functions

Parameters

e sockfd

— you guessed it: the same socket fd you used for bind ()
and listen()

e addr

— a pointer to a struct sockaddr

— will be populated by accept ()
 similar to usage of servinfoin getaddrinfo ()

e addrlen

— really just points to an integer saying the max size for the
client’s ip address

— accept () willchange the integer if it uses a shorter ip
address

accept () Usage

e accept() blocks!

* Whenyoucall accept()..

— Your program blocks, waiting for a client to call
connect ()

* We'll show you how to use connect () inafewslides

* When aclient connect ()s...

— accept () returnsanew socket file descriptor for the
connection to the client

— This fd is bound to a random port, and...
— addr is populated with the info about the other side

— You don’t actually need to use addr, since you can just
read/write on the new file descriptor

Code!

//network includes
<sys/types.h>
<sys/socket.h>
<netdb.h>

/mLsC 1ncludes
<string.h>

main (argc, **argv) {

socket we will

//getaddrinfo(),

//In real code, ch your return values for errors!
bind(Cacceptfd, servinfo->ai_addr, servinfo->ai_addrlen);
lListen(Cacceptfd, 10);

newfd;
sockaddr_in client_addr;
socklen_t client_addrlen;
newfd = accept(acceptfd, (sockaddr *)&client_addr, &client_addrlen); //

//newfd 1s now a readable/writeable socket to a connected cl

Client-side Calls (TCP)

connect ()

int connect(int sockfd,
struct sockaddr *serv_addr,
int addrlen);

* Connects to a server that is waiting on an
accept () call

e Returns <0 on error

Parameters

* sockfd
— Yup, the file descriptor returned from socket ()

e serv_addr
— information about the server to connect to
— (*servinfo)->ai_addr

* addrlen

— length (bytes) of server address structure
— (*servinfo)->ai_addrlen

That’s it! (for the TCP client)

main (argc, **argv) {

sockfd;
addrinfo *servinfo; //populated by getaddrinfo()

//getaddrinfo(), socket()... sockfd is now a live socket

//In real code, check your return values for errors!
connect(sockfd, servinfo->ai_addr, servinfo->ai_addrlen);

//sockfd is now readable/writablel|

Sending and Receiving

send ()

int send(int sockfd,
const void *msg,
int len,
int flags);

e use to send data over a stream socket
e returns the number of bytes actually sent

Parameters

sockfd : the socket

msg

— a pointer to the data to send
len

— length of data to send

flags

— don’t worry about this; just setto 0

Return Value

* Number of bytes actually sent

— -1 on error
* May be less than len!

* For this reason, send () needs to be called in
a loop to make sure everything is sent

recv ()

int recv(int sockfd,
void *buf,
int len,
int flags);
* For reading over a stream socket
* Blocks until something arrives

* Returns the number of bytes read

— 0 if connection is remotely closed
— -1 on error

Parameters

sockfd

buf
— buffer that the data wil be read into

len

— maximum length of data to read
— never set this greater than the size of the buffer

flags

— for our purposes, 0O

sendto ()

int sendto(int sockfd,
const void *msg,
int len,
unsigned int flags,
const struct sockaddr *to,
socklen t tolen);

* For datagram (UDP) socket sending

Parameters

* First four —exact same as with send ()
* to

— remote address to send to

— (*servinfo)->ai_addr
* tolen

— length of remote address

— (*servinfo)->ai_addrlen

Return Value

* Number of bytes sent, 0 on error
* Send in aloop

recvfrom()

int recvfrom(int sockfd,
void *buf,
int len,
unsigned int flags,
struct sockaddr *from,

int *fromlen) ;

* For datagram (UDP) socket receiving

Parameters

* First four—sameasrecv()

e from

—recvfrom() populatesto hold address of
sender

* fromlen
—recvfrom() setstolength of “from”

Return Value

* Number of bytes read
— -1 on error

close(), shutdown()

* For killing sockets

e Justuseclose(sockfd)

— This is just the normal UNIX close () callto
close a file descriptor

Examples

* There are excellent and comprehensive code
examples (as well as explanations of

everything here) in Beej’s Guide to Network
Programming

* http://beej.us/guide/bgnet/

Additional Info

select ()

int select (int numfds,
fd set *readfds,
fd set *writefds,
fd set *exceptfds,
struct timeval *timeout) ;

* Informs you when any of a number of sockets have information for
reading

* Allows you to monitor a number of connections at once, and even
accept new connections, without blocking on any individual one

e Useful to avoid opening a new thread for each connection (hint
hint...)

Parameters

numfds
— the value of the highest file descriptor plus one
— keep a running tally
readfds
— a set of file descriptors you want to read on
writefds
— a set of file descriptors you want to write on
exceptfds
— don’t worry about this
timeout
— max. time to wait before returning

— set to NULL to block indefinitely
 thisis probably what you want to do

Return Value

 The number of file descriptors ready, or -1 on
error

Useful Macros

Used for managing fd_sets

FD SET(int fd, fd set *set)

— Add an fd to an fd_set

FD CLR(int fd, fd set *set)

— Remove an fd from an fd_set

FD ISSET(int fd, fd set *set)
— Check whether fd is set

— Used once select () returns to see if the fd is ready for
reading / writing

FD ZERO(fd set *set)

— Clear an fd_set

Sohowdoluseselect()?

<sys/types.h>
<sys/time.h>
<unistd.h>

main (argc, **argv) {
fd_set fds_master, fds_read_copy; // it's good practice to keep an unmodified master fd_set
highest_fd = 0; // keep track of the highest fd you have opened so far

FD_ZERO(&fds_master);
FD_ZERO(&fds_read_copy); // zero out your fd_sets

// call FD_SET(sockfd, &fds_master) for any socket you open and want to read on

fds_read_copy = fds_master; // preserve the original fd_set

// don't forget to error check in real code
selectChighest_fd + 1, &fds_read_copy, -); // this blocks

socket_num;

(socket_num = @; socket_num <= highest_fd; ++socket_num) {
(FD_ISSET(socket_num, &fds_read_copy)) {
// socket_num has data ready to be read

Tips

 Add your accept ()-ing fd to the fd_set you
select() on

— that way you don’t have to block on accept ()

Byte Order

ntohs(), ntohl(), htons(), htonl()

/aa{

“network to host short”, “network to host long”, “host to
network short”, “host to network long”

Makes sure that all info is sent over the wire in the same byte
order

Call hton () before sending data over the wire
Call ntoh () after reading data off of the wire

