CSCl1 1675
Designing High Performance

Network Systems

Fall 2025
Akshay Narayan
BioMed 291 10:30- 11:50

https://cs.brown.edu/courses/cscilé6/5/

https://cs.brown.edu/courses/csci1675/

About me: Akshay Narayan

- Second year at Brown
- Postdoc at Berkeley, PhD from MIT, Undergrad from Berkeley

- Focus throughout: systems and networking

Today's class session

- What is this class about?

- Administrivia

Class Goals

- Understand performance for network systems
- How do we measure performance?

- How does system design affect performance?

What is the class not about?

- Non-network systems’ performance (consider 1952Y)
- Learning about network protocols
- Interface between applications and hardware

- Building applications that use the network

These topics are addressed in this class’s
prerequisites, CS 1680/CS 1670/ CS 1380

(We may cover some topics you have previously seen in greater depth)

~10 minute Discussion:

1. Why care about performance?

2. If system A has “better performance” than system B,
what does that mean?

Meme 1: Specialization

Dave Patterson (UC Berkeley/Google)
(also Turing award winner):

- Scenario with 100M users speaking to phones 3
minutes per day: If only CPUs, double whole
data center fleet!

- Goal: Custom Domain Specific Architecture
(DSA) to reduce the Total Cost of Ownership
(TCO) of DNN inference phase by 10X

One meta-strategy to improve performance:

specialization

source: https://www.cs.ucla.edu/wp-content/uploads/cs/PATTERSON-10-Lessons-4-TPU-gens-CO2e-45-minutes.pdf

Meme 2: Premature Optimization

Don Knuth (Stanford), 1974 Turing Award lecture:

The real problem is that programmers have spent
far too much time worrying about efficiency in the
wrong places and at the wrong times; premature
optimization is the root of all evil (or at least most
of it) in programming.

Trying to improve performance

might introduce bugs

Counterpoint: Costs of specialization

Can we optimize without specializing?
A plea for generality in research systems
Aurojit Panda (NYU), HotEthics Workshop 2024

- Building specialized hardware clusters takes a lot of
resources, and they can only do one thing

- S0, not many entities can afford to invest in specialized
deployments

- Ultra-fast performance within a specific deployment, or
decent performance across a wide range of deployments?

source: https://hotethics.qgithub.io/papers/Panda Hotethics24.pdf

https://hotethics.github.io/papers/Panda_Hotethics24.pdf

Questions to keep in mind

- When is improving performance worth the costs?
- What type of costs are they (societal? complexity?)?
- How can we measure those costs?

- This class: It's important to understand performance, so
we know not just but to improve it

Class Topics

- Module 1: Measuring performance
- ~September

- Module 2: 1O
- ~Early October

- Module 3: Concurrency and Scheduling
- ~Late October

- Module 4: Cloud Computing

- ~November

Administrivia

12

Graduate Co-Instructor: Oguzhan Colkesen

- Research on parallelizing shell programs
- Will give ~one third of the lectures
- Office hours:

- Thursdays, 12:00-14:00
- Location TBD

HTA: Aryan Singh

- Returning HTA from spring offering
- Development work on projects O and 1
- Office hours:

- Monday, Wednesday 1/:00 - 18:00
- Location TBD

UTA: Bokal Bi

- CS 2680 alumnus: research on eBPF
- Office hours:

- Tuesday, Thursday 17:00 - 18:00
- Location TBD

Enrollment

- Capacity won't increase (you just met the entire staff).

- If you are going to drop, please do so sooner rather than
later as a courtesy to people on the waitlist

- We will resolve the waitlist on a rolling basis

- Last semester, everyone who wanted a spot got one

- Waitlist form: https://forms.gle/a5GzEPi6GwS5BwgSk8

- (I will publish these slides on the class website)

https://forms.gle/a5GzEPi6Gw5BwgSk8

Class Components + Grading

- This class has two major components:
- Reading + writing homeworks (35%)
- Implementation + evaluation projects (65%)
- Projects O, 1, and 2: focus on network APIs

- Project 3: focus on microservices

Reading + Writing Homework Assignments

- Goals: Get practice reading technical papers about content from
lectures, and writing technical responses.

- We will read ~6 research papers across 4 homework assignments

- HWO out today: https://cs.brown.edu/courses/cscilé6/5/
fall2025/hw/hwO.html

- Due 16 Sept. (the end of shopping period)

Please don’t use Al tools (LLMs) to write homework

responses. The whole point is practicing your own
technical writing skills.

18

https://cs.brown.edu/courses/csci1675/fall2025/hw/hw0.html
https://cs.brown.edu/courses/csci1675/fall2025/hw/hw0.html
https://cs.brown.edu/courses/csci1675/fall2025/hw/hw0.html

Projects

- Goals: Learn evaluation techniques. Gain experience with modern
network APIls and tools.

- Projects O, 1, 2 will progressively build and evaluate a fake-work app

- Students found project 1 hard last semester, so we have split it into
two milestones (7 Oct., 21 Oct.)

- Project 3 is standalone

- Depending on enrollment, we might make some projects (not projects
O or 1) team projects (teams of 2)

- All projects will be implemented in

Projects

- Implementation:
- Write a performance-oriented system feature
- Mostly focused on 1O (network systems)
- Evaluation:
- Measure and interpret your system’s performance

- Write a report explaining your system’s performance using
Instrumentation data

- Run on course VMs to get consistent results, but your deliverable is
really the report (submit on Gradescope)

Projects

- Different than projects in many other classes
- Focus on understanding behavior over implementation correctness
- You are responsible for testing your own implementation
- Grading format: “research meeting”
- Meet with course staff to briefly present your report
- Questions about the performance trends you observed
- Answers using quantitative evidence from your report
- Regrade policy:

- Fix any problems by the next grading meeting to regain points

Course Feedback about 1675 Projects

This course is more difficult than you expect. Having taken project heavy courses,
| thought this course would take a lot less time.

Making sure your metrics meet the requirements can be difficult if you take the
wrong approach, and the assignments will not tell you what approach to take.

The class's smallest focus is on the implementation, and the majority of it is on
the data/graphs you produce, how you analyze them, and how you justify them.

Why Rust?

- Modern systems programming language
- Great tooling and documentation, easy to work with
- Compiler can detect memory safety bugs
- If you're familiar with C/C++, Rust is easier

- If you're familiar with Golang, its runtime bakes-in features that
project 2 will explore implementing

Rust Lifetimes

Original C version (real bug from my code, 2022)

int make_match_rule(struct rte_flow_item xpattern_out, ul6 dst_port) {
struct rte_flow_item_udp udp_flow =
{ .hdr.dst_port = RTE_BE16(dst_port) };
struct rte_flow_item patterns = {
{ .type = RTE_FLOW_ITEM_TYPE_UDP,
.mask = &udp_dst_port_mask,
.spec = &udp_flow, .last = NULL }};
memcpy(pattern out , &patterns sizeof(struct rte_flow_item)):
%

Bug: DPDK flow steering isn't working.

Rust Lifetimes

Rust version

fn make_match_rule(pattern_out: &mut|[rte_flow_item],
dst_port: ul6) —> 132 {
let udp_flow = rte_flow_item_udp { dst_port };:

let patterns = [rte_flow_item{ udp_flow: &udp_flow } |;
pattern_out.copy_from_slice(&patterns);
return 9O;

)

25

Rust Lifetimes

error [EQ597]: “udp_flow™ does not live long enough
——> src/lib.rs:11:45

10 let udp_flow = rte_flow_item_udp { dst_port: 42 };
binding udp_flow declared here
11 let patterns = | rte_flow_item{ udp_flow: &udp_flow }]|;
NNNNNNNNN

borrowed value does not live long enough
this usage requires that "udp_flow 1is borrowed for "~'static

14 }
— udp_flow dropped here while still borrowed

26

Learning Rust

- Brown’s Rust book: https://rust-book.cs.brown.edu/

- Chapter 4, Lifetimes: https://rust-book.cs.brown.edu/ch04-00-
understanding-ownership.html

- “Traditional” book, TRPL: https://doc.rust-lang.org/stable/book/

- Rust by Example: https://doc.rust-lang.org/stable/rust-by-
example/

- std library documentation: https://doc.rust-lang.org/std/
Index.html

27

https://rust-book.cs.brown.edu/
https://rust-book.cs.brown.edu/ch04-00-understanding-ownership.html
https://rust-book.cs.brown.edu/ch04-00-understanding-ownership.html
https://rust-book.cs.brown.edu/ch04-00-understanding-ownership.html
https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/stable/rust-by-example/
https://doc.rust-lang.org/stable/rust-by-example/
https://doc.rust-lang.org/stable/rust-by-example/
https://doc.rust-lang.org/stable/rust-by-example/
https://doc.rust-lang.org/std/index.html
https://doc.rust-lang.org/std/index.html
https://doc.rust-lang.org/std/index.html
https://doc.rust-lang.org/std/index.html

Action ltems

- Fill out the override form if you are not registered
- Start workingon HW O
- Project O will be released soon

- Take some time to practice with Rust if needed

