
Networks IV: SSL/TLS

CS 1660: Introduction to Computer
Systems Security

SSL and TLS

• Secure Socket Layer (SSL)
• Early protocol for securing web

connections
• Developed in the 90s by team led

by Taher Elgamal at Netscape
• Transport Layer Security (TLS)
• Evolution of SSL
• Standardized by IETF
• TLS 1.0 RFC 2246 (1999)
• TLS 1.2 RFC 5246 (2008)
• TLS 1.3 RFC 8446 (2018)

• Patent issued in 1997
• … method of encrypting and

decrypting information
transferred over a network
between a client ... and a
server …

SSL/TLS and Malware 2
Image source: Alexander Klink via Wikipedia

Taher Elgamal

4/20/23

https://commons.wikimedia.org/wiki/User:AlexanderKlink
https://en.wikipedia.org/wiki/File:Taher_Elgamal_it-sa_2010.jpg

Overview

4/20/23 SSL/TLS and Malware 3

Goals of SSL/TLS

• End-to End Confidentiality
• Encrypt communication between

client and server applications

• End-to-End Integrity
• Detect corruption of

communication between client
and server applications

• Required server Authentication
• Identity of server always proved to

client

• Optional client authentication
• Identity of client optionally proved

to server

• Modular deployment
• Intermediate layer between

application and transport layers
• Handles encryption, integrity, and

authentication on behalf of client
and server applications

4/20/23 SSL/TLS and Malware 4

TLS Building Blocks

4/20/23 SSL/TLS and Malware 5

Confidentiality Integrity Authentication

Setup Public-key
encryption
(e.g, RSA)

Public-key
digital signature
(e.g., RSA)

Public-key
digital signature
(e.g., RSA)

Data
transmission

Symmetric
encryption
(e.g., AES)

Cryptographic
hashing
(e.g., SHA256)

TLS Overview
• Handshake protocol
• Client authenticates server
• [Server authenticates client]
• Client and server agree on

crypto algorithms
• Client and server establish

session keys
• Record protocol
• Encrypt and add integrity

protection before sending data
• Verify integrity and decrypt

after receiving data

4/20/23 SSL/TLS and Malware 6

Record
protocol

Handshake
protocol

Web
Browser

Web
Server

TLS Overview
• Browser sends supported crypto

algorithms (aka cipher suite)
• Server picks strongest algorithms

it supports
• Server sends certificate (chain)
• Client verifies certificate (chain)
• Client and server agree on secret

value by exchanging messages
• Secret value is used to derive

keys for symmetric encryption
and hash-based authentication
of subsequent data transfer

4/20/23 SSL/TLS and Malware 7

Proposed crypto

Certificate

Selected crypto

Data transfer

Key exchange

Web
Browser

Web
Server

Verify
certificate

Derive
keys

Derive
keys

Example of Cipher Suite

TLS_RSA_WITH_AES_128_GCM_SHA256
• TLS defines the protocol
• RSA specifies the key exchange algorithm
• AES_128_GCM indicates the cipher being used to

encrypt the message stream
• SHA256 identifies the hash algorithm used to

authenticate messages
4/20/23 SSL/TLS and Malware 8

SSL/TLS analysis with Wireshark
https://tls.ulfheim.net/

4/20/23 SSL/TLS and Malware 9

Clicker Question (1)

• Which of the following is not true about TLS?
A. TLS is a more secure and updated version of SSL
B. Encryption of data takes place during handshake between

client and server
C. TLS is not immune from private key theft
D. TLS is faster because it uses fewer resources than SSL

4/20/23 SSL/TLS and Malware 10

Clicker Question (1) - Answer

• Which of the following is not true about TLS?
A. TLS is a more secure and updated version of SSL
B. Encryption of data takes place during handshake between

client and server
C. TLS is not immune from private key theft
D. TLS is faster because it uses fewer resources than SSL
The handshake simply agrees on crypto algorithm and keys for
encryption and integrity checking, but doesn't actually encrypt
4/20/23 SSL/TLS and Malware 11

Key Exchange and Forward Secrecy

4/20/23 SSL/TLS 12

Basic Key Exchange
• Called RSA key exchange for

historical reasons
• Client generates random

secret value R
• Client encrypts R with public

key, PK, of server: C = EPK(R)
• Client sends C to server
• Server decrypts C with

private key, SK, of server:
R = DSK(C)

4/20/23 SSL/TLS 13

C
Web

Browser
Web
Server

R = random()
C = EPK(R)

R = DSK(C)

Forward Secrecy

• General concept
• Compromise of public-key encryption private keys does not break

confidentiality of past encrypted messages

• Forward secrecy in the context of TLS
• Compromise of server’s private key (associated with public key in

certificate) does not break confidentiality of past TLS sessions

• TLS with basic key exchange (aka RSA key exchange) does not
provide forward secrecy

4/20/23 SSL/TLS 14

Forward Secrecy
• Compromise of public-key encryption

private keys does not break confidentiality
of past messages

• TLS with basic key exchange does not
provide forward secrecy
• Attacker eavesdrop and stores all TLS

communication
• If server’s private key, SK, is compromised,

attacker recovers secret value R in key
exchange and derives from R encryption key
used in subsequent encrypted TLS
communication

4/20/23 SSL/TLS 15

C
Web

Browser
Web
Server

R = random()

C = EPK(R)

R = DSK(C)

Diffie Hellman Key Exchange

4/20/23 SSL/TLS 16

X
Web

Browser
Web
Server

Secret value x
Public value X

Source: ACM Source: ACM

Y

key K derived
from x and Y

Achieves forward secrecy

Secret value y
Public value Y

key K derived
from y and X

https://www.acm.org/awards/2015-turing
https://www.acm.org/awards/2015-turing

Diffie Hellman Key Exchange

• Client randomly generates x and
derives public value X

• Server randomly generates y and
derives public value Y

• Client and server exchange
values X and Y

• Client derives key K from x and Y
• Server derives key K from y and X
• Attacker who captures X and Y

cannot reconstruct K

4/20/23 SSL/TLS 17

X
Web

Browser
Web
Server

x = rand()

X = f(x)

Source: ACM Source: ACM

Y

y = rand()

Y = f(y)

K =g(x, Y) K = g(y, X)

Achieves forward secrecy

https://www.acm.org/awards/2015-turing
https://www.acm.org/awards/2015-turing

Modular Arithmetic

• mod function
• x mod n is the remainder of

the division of x by n
• x mod n has has values

between 0 and n - 1
• Examples
• 29 mod 13 = 3
• 13 mod 13 = 0
• -1 mod 13 = 12

• Modular arithmetic has
properties similar to standard
arithmetic
• E.g., associative and

commutative
• Several cryptographic

functions are based on
modular arithmetic
• E.g., RSA cryptosystem

4/20/23 SSL/TLS 18

Power of a Power Property

• Standard arithmetic
• axy = (ax) y = (ay) x

• Example: 22·3 = (22)3 = (23)2 = 64
• Modular arithmetic
• axymod n = (ax) ymod n = (ay) xmod n

4/20/23 SSL/TLS 19

Discrete Logarithm Problem

• Modular power and logarithm
• y = ax mod n
• Assume a and n are fixed public parameters
• x is the logarithm of y in base a modulo n

• Modular power is easy
• There is an efficient algorithm to compute y given x

• Modular logarithm is hard
• No efficient algorithm is known to compute x given y

4/20/23 SSL/TLS 20

DH Key Exchange Details

• Public parameters: prime p and
generator g

• Client generates random x and
computes X = gx mod p

• Server generates random y and
computes Y = gy mod p

• Client sends X to server
• Server sends Y to client
• Client and server compute

K = gxy mod p
4/20/23 SSL/TLS - Part II 21

X
Web

Browser
Web
Server

x = rand()

X = gx mod p

Source: ACM Source: ACM

Y

y = rand()

Y = gy mod p

K = Yx mod p K = Xy mod p

Achieves forward secrecy

https://www.acm.org/awards/2015-turing
https://www.acm.org/awards/2015-turing

Injection Attack

Solution
• Browser and server send signed X and Y respectively
• Requires each to know the public key of the other
• Optional for browser as it usually does not have certificate

4/20/23 SSL/TLS 22

X

A

Y

A

K1 = g(x, A) K1 = g(a, X) K2 = g(a, Y) K2 = g(y, A)

Web
Browser

Web
Serverx y

a

Clicker Question (2)

• DH key exchange is prone to man in the middle attack,
because it does not provide ______ of participating parties.

A. Security token
B. Authentication
C. One-time pad
D. Password

4/20/23 SSL/TLS 23

Clicker Question (2) - Answer

• DH key exchange is prone to man in the middle attack,
because it does not provide authentication of participating
parties.

A. Security token
B. Authentication
C. One-time pad
D. Password

4/20/23 SSL/TLS 24

Certificates and PKI

4/20/23 SSL/TLS and Malware 25

TLS Goals

• Confidentiality
• Integrity
• Authentication

4/20/23 SSL/TLS and Malware 26

TLS Goals

Authentication: verifying that the entity on the other end of the
connection is who they claim to be

4/20/23 SSL/TLS and Malware 27

TLS Goals

Authentication: verifying that the entity on the other end of the
connection is who they claim to be
• Technical aspects: crypto
• Social aspects
• How to distribute keys to entities
• What to do when things go wrong

4/20/23 SSL/TLS and Malware 28

TLS: relies on Public Key Infrastructure (PKI)
via certificates

The Challenge

4/20/23 SSL/TLS and Malware 29

yourbank.comYou
(...part of handshake...)

Kpub,bank.com

The Challenge

4/20/23 SSL/TLS and Malware 30

yourbank.comYou
(...part of handshake...)

Kpub,bank.com
Pick challenge x

Enc(Kpub,bank.com, x)

The Challenge

What does this prove?

4/20/23 SSL/TLS and Malware 31

yourbank.comYou
(...part of handshake...)

Kpub,bank.com
Pick challenge x

Enc(Kpub,bank.com, x)
x' = Dec(Kpriv, x)

x'
x ?= x'

Authentication challenges

• Challenge proves that the server at yourbank.com holds Kpriv
• Does NOT prove belong to the server belongs to your bank,

the real-life bank with your money

4/20/23 SSL/TLS and Malware 32

Authentication challenges

• Challenge proves that the server at yourbank.com holds Kpriv
• Does NOT prove belong to the server belongs to your bank,

the real-life bank with your money

"But I'm visiting yourbank.com!"

4/20/23 SSL/TLS and Malware 33

Authentication challenges

• Challenge proves that the server at yourbank.com holds Kpriv
• Does NOT prove the server belongs to YourBank, the real-life

bank that holds your money

"But I'm visiting yourbank.com!"
• DNS can be spoofed
• Possible active network attacker (redirecting your IP traffic to malicious

server)
• Domain names can expire and be re-registered...

4/20/23 SSL/TLS and Malware 34

Problem: distributing trust

How can we trust Kpub is Your Bank's public key?
Problem: Trust distribution
• Hard to verify real-world identities
• Hard to scale to the whole Internet

Different protocols have different mechanisms
=> TLS (and others): Public Key Infrastructure (PKI) with

certificates

4/20/23 SSL/TLS and Malware 35

PKI: The main idea

Public keys managed by Certificate Authorities (CAs)
• Everyone knows public key for some root CAs
• Pre-installed into browser/OS

4/20/23 SSL/TLS and Malware 36

CA

PKI: The main idea

Public keys managed by Certificate Authorities (CAs)
• Everyone knows public key for some root CAs
• Pre-installed into browser/OS

• If X wants a public key, request from CA
• CA validates X's identity, then signs X's public key

4/20/23 SSL/TLS and Malware 37

CA

Kpub,X

$$$ (usually)

PKI: The main idea

Public keys managed by Certificate Authorities (CAs)
• Everyone knows public key for some root CAs
• Pre-installed into browser/OS

• If X wants a public key, request from CA
• CA validates X's identity, then signs X's public key
• Generates certificate

4/20/23 SSL/TLS and Malware 38

CA

Kpub,X

$$$ (usually)

PKI: The main idea

Public keys managed by Certificate Authorities (CAs)
• Everyone knows public key for some root CAs
• Pre-installed into browser/OS

• If X wants a public key, request from CA
• CA validates X's identity, then signs X's public key
• Generates certificate

4/20/23 SSL/TLS and Malware 39

CA

Kpub,X

$$$ (usually)

s = Sign(Kpriv,CA, {Kpub,X, ... })

Cert = {Kpub,X, metadata, s}

PKI: The main idea

Public keys managed by Certificate Authorities (CAs)
• Everyone knows public key for some root CAs
• Pre-installed into browser/OS

• If X wants a public key, request from CA
• CA validates X's identity, then signs X's public key
• Generates certificate

• Client can verify Kpub,X from CA's signature:
Verify(Kpub,CA Cert) => True/False

4/20/23 SSL/TLS and Malware 40

CA

Kpub,X

$$$ (usually)

s = Sign(Kpriv,CA, {Kpub,X, ... })

Cert = {Kpub,X, metadata, s}

PKI: The main idea

Public keys managed by Certificate Authorities (CAs)
• Everyone knows public key for some root CAs
• Pre-installed into browser/OS

• If X wants a public key, request from CA
• CA validates X's identity, then signs X's public key
• Generates certificate

• Client can verify Kpub,X from CA's signature:
Verify(Kpub,CA Cert) => True/False

4/20/23 SSL/TLS and Malware 41

CA

Kpub,X

$$$ (usually)

s = Sign(Kpriv,CA, {Kpub,X, ... })

Cert = {Kpub,X, metadata, s}

=> Delegates trust for individual entity to a more trusted authority

4/20/23 SSL/TLS and Malware 42

4/20/23 SSL/TLS and Malware 43

What's in a certificate?

• Public key of entity (eg. yourbank.com)
• Common name: DNS name of server (yourbank.com)
• Contact info for organization

4/20/23 SSL/TLS and Malware 44

What's in a certificate?

• Public key of entity (eg. yourbank.com)
• Common name: DNS name of server (yourbank.com)
• Contact info for organization
• Validity dates (start date, expire date)
• URL of revocation center to check if key has been revoked

4/20/23 SSL/TLS and Malware 45

All of this is part of the data signed by the CA
=> Critical to check all parts during TLS startup!

4/20/23 SSL/TLS and Malware 46

PKI hierarchy

In reality, PKI creates a hierarchy of trust:
• Root CAs: kpub stored in virtually every browser, OS
• Private keys protected by most stringent security measures (software,

hardware, physical)

• Intermediate CAs: kpub signed by root CA
• Sign certificates for general use (ie, regular websites)
• Doesn't require same protections as root

• General-use certificates: for a specific webserver

4/20/23 SSL/TLS and Malware 47

PKI hierarchy

In reality, PKI creates a hierarchy of trust:
• Root CAs: kpub stored in virtually every browser, OS
• Private keys protected by most stringent security measures (software,

hardware, physical)

• Intermediate CAs: kpub signed by root CA
• Sign certificates for general use (ie, regular websites)
• Doesn't require same protections as root

• General-use certificates: for a specific webserver

4/20/23 SSL/TLS and Malware 48
What happens if a root is compromised?

How the hierarchy works

4/20/23 SSL/TLS and Malware 49

B
(yourbank.com)Client

Kpub,Root

Ex. Server has certificate from Intermediate CAInt

B has:
• Kpriv,B
• CertB = { Kpub,B, Sign(Kpub,B, Kpriv,Int), ... }

How the hierarchy works

4/20/23 SSL/TLS and Malware 50

B
(yourbank.com)Client

(TLS handshake)

{CertB, CertInt}
Kpub,Root

Ex. Server has certificate from Intermediate CAInt

B has:
• Kpriv,B
• CertB = { Kpub,B, Sign(Kpub,B, Kpriv,Int), ... }

How the hierarchy works

4/20/23 SSL/TLS and Malware 51

B
(yourbank.com)Client

(TLS handshake)

{CertB, CertInt}
Kpub,Root

Ex. Server has certificate from Intermediate CAInt

B has:
• Kpriv,B
• CertB = { Kpub,B, Sign(Kpub,B, Kpriv,Int), ... }

Client's workflow:
• Checks metadata ✅
• Verify(CertB, Kpub,Int) ✅
• Verify(CertInt, Kpub,Root) ✅

How the hierarchy works

4/20/23 SSL/TLS and Malware 52

B
(yourbank.com)Client

(TLS handshake)

{CertB, CertInt}
Kpub,Root

Ex. Server has certificate from Intermediate CAInt

B has:
• Kpriv,B
• CertB = { Kpub,B, Sign(Kpub,B, Kpriv,Int), ... }

Client's workflow:
• Checks metadata ✅
• Verify(CertB, Kpub,Int) ✅
• Verify(CertInt, Kpub,Root) ✅ => To verify integrity, need to verify certificates back to

(trusted) root certificate
=> OK if verification passes and metadata correct: 🔒

4/20/23 SSL/TLS and Malware 53

Most common TLS errors you might see

• Common name invalid
• Self-signed
• Certificate expired

When is it okay to click "proceed"? What happens if you do?

4/20/23 SSL/TLS and Malware 54

Most common TLS errors you might see

• Common name invalid
• Self-signed
• Certificate expired

When is it okay to click "proceed"? What happens if you do?

4/20/23 SSL/TLS and Malware 55

=> Might occur if webserver configured improperly, or if you're
setting up a system

Rogue Certificates?

• In 2011, DigiNotar, a Dutch root certificate authority, was
compromised

• The attacker created rogue certificates for popular domains like
google.com and yahoo.com

• DigiNotar was distrusted by browsers and filed for bankruptcy
• See the incident investigation report by Fox-IT

4/20/23 SSL/TLS and Malware 56

http://www.rijksoverheid.nl/documenten-en-publicaties/rapporten/2011/09/05/diginotar-public-report-version-1.html

• In 2017, Google questioned the certificate issuance policies and
practices of Symantec

• Google’s Chrome would start distrusting Symantec’s certificates unless
certain remediation steps were taken

• See back and forth between Ryan Sleevi (Chromium team) and
Symantec

• The matter was settled with DigiCert acquiring Symantec’s certificate
business

4/20/23 SSL/TLS and Malware 57

https://arstechnica.com/information-technology/2017/03/google-takes-symantec-to-the-woodshed-for-mis-issuing-30000-https-certs/
https://www.digicert.com/news/digicert-to-acquire-symantec-website-security-business/

TLS decryption

What happens when an organization wants to view TLS traffic on
its network?

4/20/23 SSL/TLS and Malware 58

4/20/23 SSL/TLS and Malware 59

Example: https://www.a10networks.com/products/thunder-ssli/

https://www.a10networks.com/products/thunder-ssli/

View SSL Certificates

• Browser can show certificate chain
• View OS's certificate keystore
• MacOS: Keychain Access app

• Linux tools: openssl
• E.g., inspect the brown.edu certificate

openssl s_client -connect brown.edu:443

4/20/23 SSL/TLS and Malware 60

What We Have Learned
•Goals of the SSL/TLS protocol
•SSL certificates, chain of trust, and revocation
•Overview of the SSL protocol
•DNSSEC

4/20/23 SSL/TLS and Malware 63

