
Cloud Security

CS 1660: Introduction to
Computer Systems Security

1

Outline
● Cloud model and threats

● Cloud storage integrity

● Provable data possession

● Information leakage from storage deduplication and synchronization

● Computing on encrypted data

2

"The Cloud"

• Provides various features to outsource various components of
applications

• Speeds up development, reduces management cost, synchronization
across many devices ...

• In modern times, many different types of services, depending on what
you want to outsource

3

"Types" of services
• User-facing applications

○ Gmail, Dropbox, OneDrive, ...

• Developer APIs
○ Google Cloud Platform, Microsoft Azure, Amazon Web services, ...
○ Various types of services, depending on what developer needs
○ Eg. Block storage, databases, whole VMs, cloud functions, ...

4

5

Cloud Models
• Outsourced storage

○ User file storage: Dropbox, Google Drive, OneDrive, iCloud, ...
○ Developer APIs: Amazon S3, Google Cloud Storage, ...

• Outsourced machines (VMs)
○ Amazon EC2, Google Compute Engine, Microsoft Azure

• Outsourced services/databases
○ Firebase, MongoDB, Cloud functions, ...

• Outsourced applications
○ E.g., Gmail, Docs, Workday, ...

6

Cloud Threats
• Attacker outside the provider's system
• Inept or malicious provider

○ Lost data
○ Corrupt data
○ Stolen data

• Malicious cloud customer ("tenant")
○ Information leaks across virtual machines
○ Information leaks from cloud storage
○ Information leaks from cloud applications

7

…we will have no liability to you for any … ALTERATION, OR THE DELETION,
DESTRUCTION, DAMAGE, LOSS OR FAILURE… of any of your content or other data…
Amazon Web Services customer agreement https://aws.amazon.com/agreement/

Threats from Other Cloud Tenants
• Other cloud customers ("tenants") may

attempt...

○ Data theft

○ Data tampering

• Vulnerabilities in sharing of hardware,
software, and network resources among
clients

○ Eg. Memory-based channel attacks

8

How is data secured in the cloud?

9

Cloud security fundamentals
• Encryption-at-rest: data is encrypted when it is stored on disk

• Encryption-in-transit: data is encrypted when it is moving between
two points

• Encryption-in-use: data is encrypted while it's being processed

Definitions by Google, but ideas are common to all providers:
https://cloud.google.com/compute/confidential-vm/docs/about-cvm 10

https://cloud.google.com/compute/confidential-vm/docs/about-cvm

Cloud security fundamentals
• Encryption-at-rest: data is encrypted when it is stored on disk

=> Most cloud providers do this

• Encryption-in-transit: data is encrypted when it is moving between
two points

=> Most cloud providers do this

• Encryption-in-use: data is encrypted while it's being processed
=> Requires trusted execution environment

(harder, specialized applications only)
Definitions by Google, but ideas are common to all providers:
https://cloud.google.com/compute/confidential-vm/docs/about-cvm

11

https://cloud.google.com/compute/confidential-vm/docs/about-cvm

Example: cloud storage

12

from google.cloud import storage

def write_read(bucket_name, blob_name):
"""Write and read a blob from GCS using file-like IO"""

storage_client = storage.Client()
bucket = storage_client.bucket(bucket_name)
blob = bucket.blob(blob_name)

with blob.open("w") as f:
f.write("Hello world")

with blob.open("r") as f:
print(f.read())

Points of encryption
Encryption at rest: Uses some form of file and/or encryption (whole disk,
database object, both, ...)

Who holds the keys?

13

Encryption at Rest: Who holds the keys?
Can be configurable by customer:
• Default method: key controlled by provider, encryption is transparent to

user

• Customer-managed keys: provider has key generation service, customer
decides which objects are encrypted with which keys

• Client-side keys: client application generates the keys, encrypts data
before sending to provider

=> End to end encryption

14

Encryption in transit
Data encrypted when moving between points
• Client->Provider: TLS
• Between provider services, datacenters

15

Example: Default method

16

Client Storage

put(m)

API
Endpoint

Encryption in transit: all provider <-> client messages protected in
transit, usually with TLS:

=> Confidentiality: prevents eavesdropping
(Also: integrity, authentication... will discuss later)

TLS Session

Example: Default method

17

Client Storage

put(m)
Provider key: k

API
Endpoint

m

db.store(m)

c = Enc(k, m)
write(c)

Problems?
=> Message is decrypted at some point while provider is storing it
(might be very small, but nonzero)
=> Provider controls where key is used, how many systems/customers it's used on...

=>Provider uses its own key to encrypt data on disk

TLS Session

Example: Default method

18

Client Storage

put(m)
Provider key: k

API
Endpoint

m

db.store(m)

c = Enc(k, m)
write(c)

=>Provider uses its own key to encrypt data on disk

TLS Session

Example: Customer-managed keys (one way)

19

Client Storage

put(mi, ki)

API
Endpoint

mi, ki

db.store(mi, ki)

c = Enc(mi, ki)
write(c)• Idea: Client tells what provider what keys to use

• Provider might generate keys for client (via another API)
or even store them on its behalf

TLS Session

Example: Customer-managed keys (one way)

20

Client Storage

put(mi, ki)

API
Endpoint

mi, ki

db.store(mi, ki)

c = Enc(mi, ki)
write(c)

Why? Client gets to decide key usage, even if provider is doing the encryption
=> Client decides what data encrypted with what key (eg. per user)
=> Client can revoke/delete individual keys

• Idea: Client tells what provider what keys to use
• Provider might generate keys for client (via another API)

or even store them on its behalf

TLS Session

Example: End to end encryption (client-side keys)

21

Client Storage

c = Enc(m, k)
put(c)

API
Endpoint

c

db.store(c)

write(c)

=> If cloud provider breached, data is not recoverable
=> Client responsible for crypto, key management (hard!)

• Idea: Client does encryption on its own, with key
not known to provider

TLS Session

End-to-end encryption

22

• Even if cloud provider is breached, data is not recoverable

• Client is more complex
○ Needs to manage keys

○ Cryptographic operations must happen client side

○ => You'll do this in Dropbox! (we give you the crypto library, though!)

End-to-end encryption not as common in cloud systems, but getting there
=> In general, cloud providers are so critical there's incentive to provide (some)
security features for customers

23
Large-scale interception by NSA revealed in 2013: Link

https://www.theguardian.com/technology/2013/oct/30/google-reports-nsa-secretly-intercepts-data-links

24

25

26

Cloud Storage Integrity

27

Cloud Storage Integrity
● Alice outsources her files to Bob (cloud storage provider)
● How can Alice check whether a file downloaded from Bob has

not been corrupted?

28

Did the Cloud Corrupt my Files?
● Alice outsources her files to Bob (cloud storage provider)
● How can Alice check whether a file subsequently downloaded

from Bob has not been corrupted?
● Basic solution

○ Alice computes and keeps cryptographic hashes of her files
○ Upon download of a file from Bob, Alice checks the hash of

the downloaded file against the stored hash
● Alice detects any change in the file with overwhelming

probability
29

More Efficient Integrity Verification
● Storing n hashes is more efficient than storing n files for Alice
● However, the asymptotic space requirement for Alice is still O(n)
● Improved solution

○ Using a cryptographic hash function, Alice builds a Merkle
tree over her files, where leaves store hashes of files and
internal nodes store hierarchically computed hash values

○ Alice keeps the root hash of the Merkle tree (and discards
the rest of the tree)

○ The asymptotic space requirement for Alice is now only O(1)
30

What is a Merkle Tree

31

● Binary tree built on top of a set of items X1, X2, …
using a cryptographic hash function, h

● Each node stores a hash value
● Leaf: hash of item

○ xi = h(Xi)
● Internal node: hash of pair of

values at children
○ a = h(x1 x2)
○ b = h(x3 x4)
○ c = h(a b)
○ ...

a b e f

c d

g

leaves

internal
nodes

root

X2X1 X4X3 X5 X7X6 X8items

x1 x2 x3 x4 x5 x6 x7 x8

Hash Tree (Merkle): building

32

v1,1v1,0

v2,0 v2,2 v2,3v2,1

m1 m2 m3 m4
H

Authentication structure
Basis: authenticated tree root

data must be ordered
H is a Hash function

V2,2 = H(m3) V2,3 = H(m4)

V1,1 = H [(V2,2) || (V2,3)]

Basis = V0,0 = H [(V1,0) || (V1,1)]
Data hash

v0,0

Hash Tree (Merkle): test

33

A user would verify data authenticity of

v1,1v1,0

v2,0 v2,2 v2,3v2,1

m1 m2 m3 m4

v0,0

Authenticated answer is made by: m3, V2,3, V1,0

And from the Basis signed by a CA.

The user can verify if m3 is authentic:

m3HV2,2 =

H

V2,3V2,2 ||H ()V1,1 =

V1,1V1,0 ||H ()

If Basis == V0,0 then m3 is authentic

m3

V0,0 =

Integrity Property of a Merkle Tree

34

Given a Merkle tree, it is unfeasible to
modify any nonempty subset of items
without modifying also the root hash

● Why?

a bʹ e f

cʹ d

gʹ

root

X2X1 X4Y3 X5 X7X6 X8

x1 x2 y3 x4 x5 x6 x7 x8

Integrity Property of a Merkle Tree

35

Given a Merkle tree, it is unfeasible to
modify any nonempty subset of items
without modifying also the root hash
● Follows from collision resistance

of the hash function
● Suppose we modify an item,

say X3, into Y3
● The nodes from the leaf to the

root change value, else we found
a collision of the hash function
somewhere along this path

● The argument generalizes to
modifying multiple items

a bʹ e f

cʹ d

gʹ

root

X2X1 X4Y3 X5 X7X6 X8

x1 x2 y3 x4 x5 x6 x7 x8

Proof of an Item in a Merkle Tree

36

● A Merkle tree provides a proof
that an item is in the set:
○ sequence of hash values and

L/R (left/right) indicators
● To build the proof for an item:

○ Start at the leaf and go up to
the root

○ At each node, pick hash value
and side of sibling node

● Example: proof for X3
○ (x4, R), (a , L), (d, R)

a b e f

c d

g

root

X2X1 X4X3 X5 X7X6 X8

x1 x2 x3 x4 x5 x6 x7 x8

Proof of an Item in a Merkle Tree (cont.)

37

● Proof verification:
○ Compare root hash with hash

derived from item and proof
● Proof for X3:

○ (x4, R), (a , L), (d, R)
● Verification:

○ g = h(h(a h(x3 x4)) d)
● The integrity property ensures

one cannot forge proofs
● Proofs have size proportional

to the logarithm of the number
of items

a b e f

c d

g

root

X2X1 X4X3 X5 X7X6 X8

x1 x2 x3 x4 x5 x6 x7 x8

Proof of an Item in a Merkle Tree (cont.)

38

● The proof of an item is essentially
a chain of hashes

● L/R indicators denote order of
hashing at each node of the chain

● Size of proof (number of values)
is height of tree, i.e., logarithm
in base two of number of items

● Examples:
○ 8 items, proof size 3
○ 1,024 items, proof size 10
○ 1 M items, proof size 20
○ 1 B items, proof size 30

a b e f

c d

g

root

X2X1 X4X3 X5 X7X6 X8

x1 x2 x3 x4 x5 x6 x7 x8

Who is Merkle?

Source: http://www.merkle.com/

39

Ralph C. Merkle
A pioneer of modern cryptography

http://www.merkle.com/

http://www.merkle.com/

Selected Related Work
● Authenticated Data Structures

○ Two party ADS model where
the client maintains a proof
of validity for the data
[Goodrich Tamassia 03]

○ Authenticated skip list
embedded in a relational
table
[Di Battista Palazzi 07]

● Storage check

○ Efficient integrity checking of
untrusted network storage
[Heitzmann, Palazzi,
Papamanthou, Tamassia 08]

● Set operations

○ Query Racing: Fast
Completeness Certification of
Query Results
[Palazzi, Pizzonia, Pucacco 10]

40

How to manage an attack?
A real Hack: Solarwinds

Today’s discussion

1. What is the Solarwinds hack?

2. Why did it happen?

3. What should we do?

76

SolarWinds Hack
- What happened?

- Texas-based IT management company
- Supply chain attack

- malware inserted into update of Orion system (network monitoring software)
- 100+ companies impacted (Microsoft included) + US government agencies

- Response
- FireEye, a cybersecurity company impacted, discovered the hack
- SolarWinds issued a security advisory
- FBI Investigation to find the actors – Russian hacker group?

- Direct cause
- Bad security practices

- “solarwinds123” used as a password for secure server (security researcher
already warned SolarWinds of this!)

77

78
https://www.businessinsider.com/solarwinds-congress-password-solarwinds123-porter-researcher-github-2021-2

Supply chain issues
• Centralization of software has created points of vulnerability that dramatically reduce

hacker effort
– SolarWinds allowed hackers to access 18,000 systems

• Vulnerabilities in one company’s product have cascading effects beyond their immediate
customers
– CISA: 30% of SolarWinds victims did not use SolarWinds

• Example: 2017 NotPetya attack
– Malware deployed by a malicious automatic update in MeDoc, Ukrainian tax

preparation software
– Caused $10 billion damage
– Damaged pharmaceutical production, global shipping, hospital systems

Underinvestment in Cybersecurity
• “Employees say that under [CEO] Mr. Thompson ... every part of the business was

examined for cost savings and common security practices were eschewed because
of their expense. His approach helped almost triple SolarWinds’ annual profit
margins to more than $453 million in 2019 from $152 million in 2010.”

• Bruce Schneier: “The market does not reward security, safety or transparency. It
doesn't reward reliability past a bare minimum, and it doesn't reward resilience at
all.”

• Core problem: limited economic incentives to invest in cybersecurity
– Expense with diminishing returns
– Limited legal liability
– Small factor in customers’ decisions => small effect on share price

80

Gordon-Loeb model

• - Even with optimal
incentives, firms will never
invest more than 37% of
expected damage from
security breaches in
cybersecurity
• - Cybersecurity not

generating profit and having
diminishing returns on
investment
• Result: total damage

caused by cybersecurity will
always significantly exceed
investment in cybersecurity

Legal liability
• Having poor cybersecurity is legal
• Limited laws regulating cybersecurity standards
• Federal Trade Commission relies on “unfair or deceptive acts” to

press charges
• Customers and shareholders need extreme cases of negligence or

false statements
– Class-action lawsuit against SolarWinds by shareholders, but only because they allege false and misleading

statements

• As long as an honest effort is made, very little legal risk in having
bad cybersecurity

Lack of business consequences
• Over time, customers tend to forgive and forget data breaches
• Equifax, eBay, Adobe, and Marriott all recovered from their breaches
• In corporate context, incentives in procurement favour functionality and

cost over possible cybersecurity risks
• Difficult to evaluate cybersecurity between companies
• Share prices usually drop heavily after a data breach, but studies show a

negligible long-term effect
• More recent data breaches have had smaller share price drops due to

“breach fatigue”

Problem Recap
- Lack of economic incentive and legal liability
- Global cost of cybercrime $6 trillion
- Cybersecurity spending is about 1% of this globally
- Theoretical limit is 37%

- Potential Solutions?

84

Responsible Disclosure
• What happens if someone discovers a vulnerability in software?
– 2008: MBTA sued three MIT students to prevent them from giving a talk about

vulnerabilities in the subway fare system
– 2019: researcher Jonathan Leitschuh discovered a vulnerability in Zoom, which

they did not fix until he publicly disclosed it
• Today, many companies have bug bounty programs in place to

encourage responsible disclosure of vulnerabilities
• Disclosure deadlines: amount of time researchers give companies to

patch vulnerabilities before disclosure
–Often varies by company and by how critical the vulnerability is

2/25/21 85Malware

https://www.wired.com/2008/08/injunction-requ/
https://medium.com/bugbountywriteup/zoom-zero-day-4-million-webcams-maybe-an-rce-just-get-them-to-visit-your-website-ac75c83f4ef5

Breach Notification Laws
- Data breach vs. security breach

- Data breaches (involving PII) are well-regulated by EU and some U.S. states
- Lack of PII means 100+ companies affected by SolarWinds are not acknowledging breaches publicly
- Microsoft 3rd party vendor used to target CrowdStrike not publicly disclosed

- Time frame
- 48-72 hours standard: is this too rushed?
- Similar challenges to vulnerability disclosure
- May be insufficient time to determine who is affected (breach fatigue)

- Who to report to
- Customers deserve to know about security breaches
- Can customers effectively evaluate cybersecurity risk?
- May be preferable to coordinate first

- Legislation expected to be introduced
- Rep. Bennie Thompson during hearings: “growing interest in a cybersecurity reporting law”, “we can

enact incident notification legislation in the short order”

- Good first step, but problems remain
86

Greater Liability
- How much responsibility should a firm have?
- Company pays anyone impacted by breach

- Helps to shift burden from customers to the firm

- Company pays the government when there is a breach
- What should the standard be?
- Punitive damages?

- Problem: some mistakes are inevitable
- Cybersecurity is offense-dominant
- Was a company at fault or just unlucky?

87

Cybersecurity Standards
- Create minimum standards and best practices, usually via NIST
- Proposed regulation

- Cybersecurity Act of 2012 (failed)
- Would have encouraged businesses to follow cybersecurity best practices by

providing liability protection
- IOT Cybersecurity Improvement Act 2020 (succeeded)

- Directs NIST to publish standards that must be followed for Internet of Things
devices purchased with government money

- Question: What about just disincentivizing cyber-crime + deterring
state actors?
- Challenges that come with this
- Will be discussed in future lectures

88

