
Operating Systems Security III

CS 1660: Introduction to Computer Systems
Security

Unix File Types RWX and octal notation

d r w x r w x r w x

owner group other

3/21/23 Operating Systems Security II 2file type

4 2 1Octal
Notation

+ + 7=

Octal Notation (recap)

Another way to specify permissions
• Digits from left (most significant) to right(least

significant):
[special bits][user bits][group bits][other bits]

• Special bit digit =
(4 if setuid) + (2 if setgid) + (1 if sticky)

• All other digits =
(4 if readable) + (2 if writable) + (1 if executable)

3/21/23 Operating Systems Security II3

Permissions Examples (Regular Files)

3/21/23 Operating Systems Security 4

read/write/execute to everyone-rwxrwxrwx
read-only to everyone, including owner-r--r--r--

read/write/execute for owner, forbidden to
everyone else

-rwx------

read/write for owner, read-only for group,
forbidden to others

-rw-r-----

read/write for owner, read-only for everyone
else

-rw-r—r--

Permissions for Directories
• Permissions bits interpreted differently for directories
• Read bit allows listing names of files in directory, but not their

properties like size and permissions
• Write bit allows creating and deleting files within the directory
• Execute bit allows entering the directory and getting properties

of files in the directory
• Lines for directories in ls –l output begin with d, as below:
jk@sphere:~/test$ ls –l

Total 4
drwxr-xr-x 2 jk ugrad 4096 2005-10-13 07:37 dir1
-rw-r--r-- 1 jk ugrad 0 2005-10-13 07:18 file1
3/21/23 Operating Systems Security5

Permissions Examples (Directories)

3/21/23 Operating Systems Security 6

full access to everyone-rwxrwxrwx

full access to owner, group can access known
filenames in directory, forbidden to others

drwx--x---

full access to owner and group, forbidden to
others

drwxrwx---

all can enter and list the directory, only owner
can add/delete files

drwxr-xr-x

The /tmp Directory

• In Unix systems, directory /tmp is
– Read/write for any user
– Wiped on reboot (or lives entirely in memory)

Convenience
– Place for temporary files used by applications
– Files in /tmp are not subject to the user’s space quota

What could go wrong?

3/21/23 7Operating Systems Security II

Special Permission Bits

Three other important permission bits
– Set-user-ID (“suid” or “setuid”) bit
– Set-group-ID (“sgid” or “setgid”) bit
– Sticky bit

3/21/23 File Permissions8

setuid bit: Set-user-ID

• On executable files, causes the program to run as file owner
regardless of who runs it

• How to view: shown as s instead of x
-rwsr-xr-x: setuid, executable by all
-rwxr-xr-x: executable by all, but not setuid

3/21/23 File Permissions9

Setuid Programs

3/21/23 Operating Systems Security 10

• Unix processes have two user IDs:
– real user ID (UID): user launching the process
– effective user ID (EUID): user whose privileges are granted to the

process
• If a user A executes a setuid file owned by B, then the

effective user ID of the process is B and not A

Setuid Programs

3/21/23 Operating Systems Security 11

• System call setuid(uid) allows a process to change its
effective user ID to uid

• Some programs that access system resources are owned by
root and have the setuid bit set (setuid programs)
– e.g., passwd and su

• Setuid generally ignored on shell scripts—why?

setgid bit: Set-group-ID (recap)
• On executable files: causes the program to run with the file’s group,

regardless of whether the user who runs it is in that group
• On directories, causes files created within the directory to have the

same group as the directory

Examples

-rwxr-sr-x: setgid file, executable by all

drwxrwsr-x: setgid directory; files within will have group of directory

3/21/23 Operating Systems Security II12

Symbolic Link (recap)

• In Unix, a symbolic link (aka symlink) is a file that points to
(stores the path of) another file

• A process accessing a symbolic link is transparently redirected
to accessing the destination of the symbolic link

• Symbolic links can be chained, but not to form a cycle

• ln -s really_long_directory/even_longer_file_name myfile

3/21/23 13Operating Systems Security II

Code as Data

14

Theme: What will our code do?

- It is hard to reason about what our code will do
- There are some fundamental limits (e.g. halt problem)

- System components consume data and treat it like code:
User input is unpredictable

15

Code as Data
Example: Bash Shell -- What happens when we run “ls”?

$PATH=/Users/wds/.shell/bin:/usr/local/bin:/usr/bin:/b
in:/usr/sbin:/sbin:/Applications/GPAC.app/Contents/Ma
cOS/:/Library/TeX/texbin:

16

Code as Data: Unexpected Results

17

Code as Data: Unexpected Results

18

So setuid/setgid is dangerous...

20

setuid/setgid is dangerous...

In modern times: only for programs that really need it
• System programs that changing passwords/users, legacy

programs
– Don't do this yourself!

• Very very bad idea for shell scripts

What else can we do?

3/21/23 21Operating Systems Security II

When do we need this?

3/21/23 22Operating Systems Security II

In the shell: su, sudo

3/21/23 23Operating Systems Security II

• Run as another user (if you have permissions)

• Run commands as root (or another user) based on system
config file (/etc/sudoers)
– Can restrict to specific commands, environment,

user@shell:~$ su –c "command" other user

/etc/sudoers:
%wheel ALL=(ALL) NOPASSWD: ALL

. . .

user@shell:~$ sudo whoami
root

What ELSE could we do?

3/21/23 24Operating Systems Security II

Race Condition

33

Race Condition

3/21/23 Operating Systems Security II 34

• A race condition occurs when
two threads want to access the
same memory

• Run Thread 1() and Thread 2()
– Outcome is 1 or 2

Global x = 0

Thread 1():
LOAD x
ADD 1
STORE x

Thread 2():
LOAD x
ADD 1
STORE x

Race Condition

3/21/23 Operating Systems Security II 35

1. if (!access("/tmp/X", W_OK)) {
/* the real user ID has access right */

2. f = open("/tmp/X", O_WRITE);
3. write_to_file(f);

}
else {

/* the real user ID does not have
access right */

4. fprintf(stderr, "Permission denied\n");
}

• Fragment of setuid program
that writes into file /tmp/X on
behalf of a user who created it

• access verifies permission of
real user ID
– Transparently follows symlinks

• open verifies permission of
effective user ID
– Transparently follows symlinks

• What can go wrong?
Source: Kevin Du, Race Condition Vulnerability, Lecture Notes

http://www.cis.syr.edu/~wedu/Teaching/IntrCompSec/LectureNotes_New/Race_Condition.pdf

TOCTOU Vulnerability

3/21/23 Operating Systems Security II 36

• What can go wrong?
– In between (1) and (2), user

could replace /tmp/X with
symlink to /etc/passwd

– Not easy to accomplish
(timing)

• Example of time of check to
time of use (TOCTOU)
vulnerability

1. if (!access("/tmp/X", W_OK)) {
/* the real user ID has access right */

2. f = open("/tmp/X", O_WRITE);
3. write_to_file(f);

}
else {

/* the real user ID does not have
access right */

4. fprintf(stderr, "Permission denied\n");
}

Attempt to Fix the Race Condition

3/21/23 Operating Systems Security II 37

1. lstat("/tmp/X", &statBefore);
2. if (!access("/tmp/X", O_RDWR)) {
3. int f = open("/tmp/X", O_RDWR);
4. fstat(f, &statAfter);
5. if (statAfter.st_ino == statBefore.st_ino) {

/* the I-node is still the same */
6. write_to_file(f);

}
7. else perror("Race Condition Attacks!");

}
8. else fprintf(stderr, "Permission denied\n");

}

• lstat and fstat access file descriptor
for a path, which includes unique
file ID (st_ino)
– lstat does not traverse symlink
– fstat accesses descriptor of open

file, after symlink traversed by open
• Step (5) compares IDs of

– file checked in (1) and
– file opened in (3)

• Check-use-check_again approach
– Defeats swapping in symlink

between access and open
• Fails also if /tmp/X is a symlink

when (2) is executed
Source: Kevin Du, Race Condition Vulnerability, Lecture Notes

http://www.cis.syr.edu/~wedu/Teaching/IntrCompSec/LectureNotes_New/Race_Condition.pdf

Does the Fix Work?

3/21/23 Operating Systems Security II 38

• New attack
– Before (1) /tmp/X is a hard

link to /etc/passwd
– Between (1) and (2) swap in

hard link to user-owned file
– Between (2) and (3) swap in

again hard link to
/etc/passwd

• This passes the ID check
in (5) and allows the user
to write to /etc/passwd

1. lstat("/tmp/X", &statBefore);
2. if (!access("/tmp/X", O_RDWR)) {
3. int f = open("/tmp/X", O_RDWR);
4. fstat(f, &statAfter);
5. if (statAfter.st_ino == statBefore.st_ino) {

/* the I-node is still the same */
6. write_to_file(f);

}
7. else perror("Race Condition Attacks!");

}
8. else fprintf(stderr, "Permission denied\n");

}

Negative Result

3/21/23 Operating Systems Security II 39

• Assumptions
– Setuid program
– Path-based permission check for

real user ID via syscall
access(path, permission) that
returns 0 or -1

– No atomic check-and-open file
syscall

• Theorem
– Program is vulnerable to TOCTOU

race condition

• Proof
– Attacker can always swap good file

before access and bad file after
access

– lstat/fstat do not help since they
are path-based as well

• Reference
– Drew Dean, Alan J. Hu: Fixing Races

for Fun and Profit: How to Use
access (2). USENIX Security
Symposium, 2004.

https://www.usenix.org/legacy/publications/library/proceedings/sec04/tech/full_papers/dean/dean.pdf

Mitigating and Eliminating Race Conditions

3/21/23 Operating Systems Security II 40

• Hardness amplification
– Force the adversary to win a large

number of races instead of just one
or two in order to exploit the
vulnerability

– Reduces the probability of success
– Complex to accomplish correctly
– Reference

• Dan Tsafrir, Tomer Hertz, David Wagner,
Dilma Da Silva: Portably Solving File
TOCTTOU Races with Hardness
Amplification. USENIX File and Storage
Technologies, 2008

• Temporary privilege downgrade
– Within same process

• Drop to real user ID privileges via
setuid(real_userid)

• Open file
• Restore root privileges

– With child process
• Fork child process with real user ID

privileges to open file
– Approach not portable across Unix

variants
https://www.usenix.org/legacy/events/sec02/
full_papers/chen/chen.pdf

https://www.usenix.org/legacy/events/fast08/tech/full_papers/tsafrir/tsafrir.pdf

Historical setuid Unix Vulnerabilities: lpr

3/21/23 Operating Systems Security II 41

• Command lpr
– running as root setuid
– copied file to print, or symbolic

link to it, to spool file named with
3-digit job number (e.g.,
print954.spool) in /tmp

– Did not check if file already existed
– Random sequence was predictable

and repeated after 1,000 times

• How can we exploit this?

• Attack
– A dangerous combination: setuid,

/tmp, symlinks, …
– Create new password file newpasswd
– Print a very large file
– lpr –s /etc/passwd
– Print a small file 999 times
– lpr newpasswd
– The password file is overwritten with

newpasswd
https://web.ecs.syr.edu/~wedu/Teaching/cis643
/LectureNotes_New/Race_Condition.pdf

Passwords

CS 1660: Introduction to Computer
Systems Security

Password Authentication

3/21/23 43Password Cracking

Password Authentication

Username, Password

Success / Failure

Client
Authentication

Server

3/21/23 44Password Cracking

Storing Passwords

3/21/23 45Password Cracking

How Should the Server Store Passwords?

• Our goal is to defend from attacks that exfiltrate the
password database stored by the server

– Most common password-related attack on server
• We don’t consider other password attacks on the

server
– Eavesdropping passwords submitted by users
– Modifying the password authentication code

3/21/23 46Password Cracking

Attempt #1 - Plaintext

Client

Server
u1 p1

u2 p2

u3 p3

3/21/23 47Password Cracking

Attempt #2 - Encryption
● Store encrypted passwords
● Decrypt and compare on login

Server
k

u1 c1 = Ek(p1)

u2 c2 = Ek(p2)

u3 c3 = Ek(p3)

Client
encryption

key

3/21/23 48Password Cracking

Attempt #3 - Hashing

Password Hash
Function Hash

1337p4Ss SHA2 a487cb0eeb4a484a269c703bce7f8c46
b53d4860267a24900ae7ceb577315eb1

Example:

3/21/23 49Password Cracking

Attempt #3 - Hashing
● Recall cryptographic hashing:

○ Variable length input, fixed length “random” output
○ One-way

■ Given hash x, hard to find p such that H(p) = x

○ Weak collision resistance
■ Given input p, hard to find q such that H(p) = H(q)

○ Strong collision resistance
■ Hard to find distinct p, q such that H(p) = H(q)

3/21/23 50Password Cracking

Attempt #3 - Hashing
• Hash the password, store the hash
• Hash the user-supplied password and compare

Server
u1 d1 = H(p1)

u2 d2 = H(p2)

u3 d3 = H(p3)

Client

3/21/23 51Password Cracking

Discussion

3/21/23 52

Server
u1 d1 = H(p1)

u2 d2 = H(p2)

u3 d3 = H(p3)

Client

Server
K = encryption key

u1 c1 = Ek(p1)

u2 c2 = Ek(p2)

u3 c3 = Ek(p3)

Server
u1 p1

u2 p2

u3 p3

#3 - Hashing#2 - Encryption#1 - Plaintext

Advantages?
What could go wrong?

Password Cracking

Attempt #1 - Plaintext
• Advantages
– Easier to manage
– Less computational needs

• What could go wrong?
– Ifdatabase is stolen, so are passwords!
– Admins have access to passwords.

• Ex. Reddit (2006), Twitter (2018)

3/21/23 53Password Cracking

http://blog.moertel.com/posts/2006-12-15-never-store-passwords-in-a-database.html
https://blog.twitter.com/en_us/topics/company/2018/keeping-your-account-secure.html

Attempt #2 - Encryption

• Advantages
– If encrypted passwords are stolen, they can’t be decrypted
– Only administrators with key can decrypt

• What could go wrong?
– If the encrypted passwords are stolen, what is to keep the

key from also being stolen?
– Anyone with the key (admins) can view passwords

• Ex. Adobe (2013)

3/21/23 54Password Cracking

https://nakedsecurity.sophos.com/2013/11/04/anatomy-of-a-password-disaster-adobes-giant-sized-cryptographic-blunder/

Attempt #3 - Hashing
• Registration

– Hash password, store hash
• Login

– Hash user-supplied password, compare with stored hash
• What advantages does this scheme have?

– If database is stolen, hashes need to be cracked
• Correct

– Cracking must be done brute-force for every password
• Is this accurate?

3/21/23 55Password Cracking

Attempt #3 - Hashing
• What could go wrong?

• Identical passwords produce identical hashes
• Once you’ve cracked a given hash, you can trivially crack it

every time you see the same hash again
• Humans pick bad passwords

• Frequency analysis
• Precompute massive tables for popular hash functions
• Common passwords are very common!
• Even a small table cracks most passwords
• Updated version

3/21/23 56Password Cracking

https://xato.net/passwords/more-top-worst-passwords/
https://xato.net/today-i-am-releasing-ten-million-passwords-b6278bbe7495

Clicker Question 1
Mallory steals a database of encrypted passwords (but cannot
steal the key). Could she recover the plaintext passwords?

A. Yes, all of them
B. Yes, a fraction of them
C. No, since the database is encrypted
D. No, since it is computationally infeasible

3/21/23 Password Cracking 57

Clicker Question 1 - Answer
• Answer: B

– Identical passwords produce identical ciphertexts
– If you know one password, you know all passwords same

ciphertext
– Humans pick bad passwords and hints
•Frequency analysis (0.5% of users use password)
•Password hints (e.g., numbers 123456)
– Unique passwords with good hints are safe

3/21/23 58Password Cracking

https://xato.net/passwords/more-top-worst-passwords/
https://nakedsecurity.sophos.com/2013/11/04/anatomy-of-a-password-disaster-adobes-giant-sized-cryptographic-blunder/

Attempt #4 - Salting

Password
Hash

Function Hash

SHA2 35e89a9469522038161a3c173815d8e7
d6ed2c6957eb5d5228be0942cf93ea72

Salt (Random)

1337p4Ss

fA4dY5

3/21/23 59Password Cracking

Attempt #4 - Salting

Server
s

u1 d1 = H(p1, s)

u2 d2 = H(p2, s)

u3 d3 = H(p3, s)

Client

salt

3/21/23 60Password Cracking

Attempt #4 - Salting

● Store hash of salted password
● Hash the password and salt, then compare
● Advantages

○ In order to precompute, need password and salt
○ Since salts are random, guessing salt is useless
○ Even if salt is known, computation must be redone for

every site

3/21/23 61Password Cracking

Clicker Question 2
Using hashing and salting to store passwords, the
server successfully defends over frequency analysis
attacks.

A. True.
B. False.
C. Not enough information.

3/21/23 Password Cracking 62

Clicker Question 2 - Answer
Using hashing and salting to store passwords, the
server successfully defends over frequency analysis
attacks.

A. True.
B. False.
C. Not enough information.

3/21/23 Password Cracking 63

Attempt #4 - Salting

● What could go wrong?
○ Identical passwords and identical salts produce identical

hashes
○ Humans pick bad passwords --> frequency analysis
○ If you crack one password, you crack all identical ones
○ For big sites, precomputation is worth it

3/21/23 64Password Cracking

Attempt #5 - Salting

●Hashing same password with different salt will
produce different hashes

SHA2 fa80328eaf40ecbf22943747d8fe63e3
b57bc9ee094db754ca74e034875deb1d

1337p4Ss

4themm

SHA2 2674d6e9c0c1f5ea3235cafccac433a3
0a9de88ddfa0c2e044b53daa63c8afdd

1337p4Ss

rsthnks

3/21/23 65Password Cracking

Attempt #5 - Per-User Salting
● Generate a salt, hash the password, store salt and hash
● Hash the given password with the user’s salt and compare

Server
u1 s1 d1 = H(p1, s1)

u2 s2 d2 = H(p2, s2)

u3 s3 d3 = H(p3, s3)

Client

3/21/23 66Password Cracking

Attempt #5 - Per-User Salting
● Generate a salt, hash the password, store the hash
● Hash the given password with the user’s salt and

compare
● Advantages

○ Since every user has different salt, identical passwords will
not have identical hashes

○ No frequency analysis
○ No using known passwords to crack other passwords
○ No precomputation, hence much harder to crack

3/21/23 67Password Cracking

Password Cracking

3/21/23 68Password Cracking

Standard Authentication in OS

The system looks up the
username compares the
hash of the password with
the stored hash

The user inserts username and
password into the login window

butch

Beaver

3/21/23 Password Cracking 69

butch
••••••

…
butch:a4566178…
…

Password file

find
hash and compare

••••••

Storing Passwords

Password filebutch

…
butch:a4566178ab4f56a3f90968e210b95bca
sundance:2d0f1a836407eb204c0a9186687b713e
…

cryptographic
hash function

Beaver

3/21/23 Password Cracking 70

Most common scenario
• The hacker is able to get usernames and password hashes
Location of password file
• Windows (32 bit): C:\WINDOWS\system32\config\SAM
• Linux: /etc/passwd and /etc/shadow
• Mac OS X:

/var/db/dslocal/nodes/Default/users/<username>.plist

71

• Brute force
– Try all passwords in a given space
– Eventually succeeds given enough time and CPU power

• Dictionary
– Precompute hashes of a set of likely passwords
– Store (hash, password) pairs sorted by hash
– Fast look up for password given the hash
– Requires large storage and preprocessing time

• Rainbow table
– Partial dictionary of hashes
– More storage, shorter cracking time

Password Cracking Methods

3/21/23 Password Cracking 72

Cracking passwords with Hashcat

3/21/23 Password Cracking 73

What is Hashcat?
Hashcat is the self-proclaimed free fastest password recovery
tool.

Benchmarks:

./hashcat -b

3/21/23 Password Cracking 74

https://hashcat.net/hashcat/

Brute Force
• Try all passwords in a given space

• Parallelizable
• Eventually succeeds given enough time and

computing power
• Best done with GPUs and specialized hardware (FPGAs,

or Asic)
• Large computational effort for each password

cracked
3/21/23 75Web Frameworks and Passwords

Brute Force Cracking
• The attacker has 60 days to crack a password by exhaustive

search
• How many hash computations per second are needed?

– 5 characters: 1,415
– 6 characters: 133,076
– 7 characters: 12,509,214
– 8 characters: 1,175,866,008
– 9 characters: 110,531,404,750

3/21/23 Password Cracking 76

Dictionary Attack
• Precompute hashes of a set of likely passwords
• Parallelizable

• Store (hash, password) pairs sorted by hash
• Fast look up for password given the hash
• Requires large storage and preprocessing time

3/21/23 77Password Cracking

Setup: Dictionary Attack
STEP 1: Make a plaintext password file of bad passwords (called `wordlist`):

bernardo12345
letmein
zaq1zaq1

STEP 2: Generate MD5 hashes:

for i in $(cat wordlist); do
echo -n "$i" | md5sum | tr -d " *-"; done > hashes

STEP 3: Get a dictionary file. (We’re using rockyou.txt which lists most common passwords from
the RockYou hack a couple years back…)

3/21/23 Password Cracking 78

https://wiki.skullsecurity.org/Passwords
https://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/

Dictionary Attack
./hashcat -m 0 -a 0 hashes rockyou.txt

Source: http://web.mit.edu/dheera/www/blur_dictattack.jpg3/21/23 Password Cracking 79

http://web.mit.edu/dheera/www/blur_dictattack.jpg

Hashtypes: -m [NUM]
0 : MD5 [8743b52063cd84097a65d1633f5c74f5]

100 : SHA1 [b89eaac7e61417341b710b727768294d0e6a277b]

1400 : SHA256

Hash-Mode 1800 (sha512crypt 6, SHA512 (Unix)

[6Lw5wXCCssJp3Ei8S$413/7AdrNLD.T/waBp61ItYXa0eUSzQQp3/iM.
oiuTCecZAR79GBom2yJlTgC.5Q5p5DHInYY/9AXjRIQ5r6K1]

https://hashcat.net/wiki/doku.php?id=example_hashes

3/21/23 Password Cracking 80

https://hashcat.net/wiki/doku.php?id=example_hashes

Password Cracking 81

Time-memory Trade-Off
1980 - Martin Hellman

– In this kind of trade-off, you reduce the time you need to
crack a password by using a large amount of memory
• Benefits: It would seem more efficient to do the brute-forcing once,

store the result, and then use this stored result to accelerate the
cracking on any machine.

• Flaws: this kind of database takes tens of memory’s terabytes.

3/21/23

Password Cracking Tradeoff

3/21/23 Password Cracking 82
Storage

Time Brute force

Dictionary

Rainbow
table

2003 - Philippe Oechslin
– In this kind of trade-off, you reduce

greatly the amount of memory and
increase slightly the time of cracking.
• A procedure for reduction of a hash database

to a much smaller table.
• Calculate the hash of all passwords, but only

store a very small fraction of them in such an
order that.

• project-rainbowcrack.com/table.htm

Rainbow Table

3/21/23 Password Cracking 83

m

…
…………………………

…

t

Attack Modes: -a [NUM]
• 0: Straight (Dictionary attack)

1: Combination (concatenating words from multiple wordlists)
2: Toggle-Case (toggling case of characters. You can use rules for
this)
3: Brute-force (trying all characters from given charsets, per
position)
4: Permutation (dictionary generates permutations of itselt)
5: Table-Lookup (Disabled in later hashcat implementations)
8: Prince (Intelligent guessing implemented by hashcat)

• https://hashcat.net/wiki/doku.php?id=hashcat
3/21/23 Password Cracking 84

https://hashcat.net/wiki/doku.php?id=dictionary_attack
https://hashcat.net/wiki/doku.php?id=combinator_attack
https://hashcat.net/wiki/doku.php?id=toggle_case_attack
https://hashcat.net/wiki/doku.php?id=mask_attack
https://hashcat.net/wiki/doku.php?id=permutation_attack
https://hashcat.net/wiki/doku.php?id=table_lookup_attack
https://hashcat.net/wiki/doku.php?id=princeprocessor
https://hashcat.net/wiki/doku.php?id=hashcat

Mask Attack (Brute-Force)
Built-in charsets:

?l = abcdefghijklmnopqrstuvwxyz
?u = ABCDEFGHIJKLMNOPQRSTUVWXYZ
?d = 0123456789
?s = !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~
?a = ?l?u?d?s
?b = 0x00 - 0xff

Run (try all lowercase passwords of length 5):

./hashcat -a 3 hashes ?l?l?l?l?l
Source: https://www.4armed.com/blog/perform-mask-attack-hashcat/

3/21/23 Password Cracking 85

https://www.4armed.com/blog/perform-mask-attack-hashcat/

Rule Based Attack
If you have a list of passwords:
password
mysecret
qwerty

What kind of rules are there?
• You can create a rule file with these

rules:

sa@
Rule 1) Substitute 'a' for '@'
p@ssword

$1 $2 $3
Rule 2) Add 123 to end:
password123
mysecret123
qwerty123

$c
Rule 3) Capitalize first word:
Password
Mysecret
Qwerty

Source: https://www.4armed.com/blog/hashcat-rule-based-attack/ 86

https://www.4armed.com/blog/hashcat-rule-based-attack/

Rule Based Attack
Run:

./hashcat -m 0 hashes rockyou.txt -r ruledemo --
debug-mode=1 --debug-file=matched.rule

Running cat matched.rule will show you all the rules that
matched so you can build better rules.

There also lots of built-in rules provided in the default hashcat
installation

3/21/23 Password Cracking 87

Intelligent Guessing Methods
• Try the top N most common passwords
– Check out several lists of passwords on Daniel Miessler’s github

• Dictionary of words, names, places, notable dates
• Combinations of the above
• Replace and intersperse digits, symbols
• Syntax model

– e.g., two dictionary words with some letters replaced by
numbers: elitenoob, e1iten00b, 31it3n00b, …

• Markov chain model or a trained neural network
3/21/23 88Password Cracking

https://github.com/danielmiessler/SecLists/tree/master/Passwords

Intelligent Guessing

• A 10-character randomly selected password would
take years of CPU time to crack

• For any scheme that involves guessing, the time to
crack is reduced by guessing intelligently

• Key insight: not all passwords are equally likely
• Idea: try most likely passwords first

3/21/23 89Password Cracking

eHarmony Hack
In 2012, 1.5 Million passwords were stolen from eHarmony and
published online. As a CS166 student you can now hack like the
pros and recover some eHarmony passwords using hashcat.

eHarmony uses MD5: so try -m 0

Warning before running command: some passwords in here are
offensive
Source: http://www.adeptus-mechanicus.com/codex/hcateasy/hcateasy.php http://www.nydailynews.com/life-style/eharmony-
passwords-hacked-1-5-million-users-dating-site-data-compromised-article-1.1091568

3/21/23 Password Cracking 90

http://www.adeptus-mechanicus.com/codex/hcateasy/eharmony.hash
http://www.adeptus-mechanicus.com/codex/hcateasy/hcateasy.php
http://www.nydailynews.com/life-style/eharmony-passwords-hacked-1-5-million-users-dating-site-data-compromised-article-1.1091568

Password algorithm issue

3/21/23 Password Cracking 91

• LAN Manager Hash
– Convert password to uppercase, truncated to length 14
– Split into two 7-charcter halves
– Compute 64-bit hash of each half

Windows XP Password Hashing

3/21/23 Password Cracking 92

Seattle1

SEATTLE 1ÆÆÆÆÆÆ

hash hash

1c6ae3fc90afc531 131b35c1a225e502

• Small password space
– Equivalent to two uppercase passwords of 7

characters
– About 6.7 trillion possible passwords

• Attack performed with rainbow table
– 1.4GB storage
– 14 seconds recovery time
– 99.9% success rate

LAN Manager Hash Weaknesses

3/21/23 Password Cracking 93

If Cracking does not Work

3/21/23 Password Cracking 94

Keyloggers

Other attacks…

3/21/23 Password Cracking 95

Hardware

Software

USB Keylogger

Password are still important..

• http://y2u.be/Srh_TV_J144
3/21/23 Password Cracking 96

“Hackers destroyed my entire digital
life in the span of an hour” 12 - 2012
Mat Honan Wired senior writer

What We Have Learned

• Password authentication
– Principles and attack vectors

• Password storage methods
– Use salted hashes

• Password cracking
– Brute-force
– Dictionary precomputation
– Intelligent guessing

• Demos
• Ethical and legal issues
– Compelled password

disclosure

3/21/23 Password Cracking 97

