

CSRF attacks

Browser performs unwanted action while user is
authenticated

2/28/23 Web Security |

bad-site.com:

<a href="http://bank.com/transfer.php&acct=1234?2amt=1000.00"7...

2/28/23

bad-site.com:

<form action="https://bank.com/wiretransfer" method="POST"

id="bank">
<input type="hidden" name="recipient" wvalue="Attacker">
<input type="hidden" name="account" value="2567">
<input type="hidden" name="amount" value="$1000.00">

</form>
document.getElementById (”“bank") .submit () ;

Is user is logged in, this will work!

2/28/23

CSRF Trust Relationships

Legitimate
S trusts user LSt
* Server trusts u
logitl User |~
* User trusts victim
enough to visit F
attacker’s site/click | ogin VELEEEER Attacker
link Request

e Attacker could be a
hacked legitimate
site

Server

2/26/23 CSRF and SQL Injection S

CSRF: How to defend?

How can we make sure a request comes from
the intended origin?

2/28/23 CSRF and SQL Injection

<form action="/transfer.do" method="post">
<input type="hidden" name="csrf token" value="aXg3423f]jp.

[...]
</form>

What does this prove?

2/28/23

CSRF Token: Mechanics

Different web frameworks handle tokens differently
» Set token per-session or per-request?

* Caninclude token directly in generated HTML, or use JS to set
via cookie

How to generate the tokens?

* "Synchronizer token": server picks random value, saves for
checking

* "Encrypted token": server sends encrypt/MAC of some value
that can be checked without saving extra state (eg. user ID)

2/28/23 CSRF and SQL Injection 1

CSRF Token Types

Synchronizer Token Encrypted Token
e Stateful e Stateless
 Value randomly generated with ¢ Token generated from user ID and

large entropy timestamp
* Mapped to user's current session * Encrypted with server’s secret key
e Server validates that token exists ¢ Server validates token by verifying it and

and is associated to user's session checking that it corresponds to current
ID user and acceptable timestamp

* Ex. Encrypted Token =
HMAC-SHA-1(‘secret key’ + user ID +
timestamp)

2/26/23 CSRF and SQL Injection 13

Another way: checking headers

"Referer" [sic] header: URL from which request is sent

v Request Headers

:authority: fonts.googleapis.com

:method: GET
:path: /css2?family=Alegreya:ital,wght@o,400;0,700;1,400&family=Jost:ital,wght@0,300;0,400;0,500;0

1,500;1,600;1,700&display=swap
:scheme: https

accept: text/css,*/%x;0=0.1

accept-encoding: gzip, deflate, br
accept-language: en-US,en;q=0.9

cache-control: no-cache

pragma: no-cache

referer: https://cs.brown.edu/

sec-ch-ua: "Chromium";v="110", "Not A(Brand";v="24", "Google Chrome";v="110"
sec-ch-ua-mobile: 70

sec-ch-ua-platform: "mac0S"

sec-fetch-dest: style

sec-fetch-mode: no-cors

2/26/23 CSRF and SQL Injection

14

Another way: checking headers

* Could check Referer header (or a different header)
on request, see if it matches expected origin

* Browser limits how Referer header can be changed

=> Useful if you trust browser; but ultimately can be
controlled by client

2/28/23 CSRF and SQL Injection 15

Strict SameSite Cookie Attribute

Controls how a cookie is sent when making a cross-site request

Set-Cookie: sessionid=12345; Domain=b.com; SameSite=Strict

- sameSite=None: Always send cookie for any request to b.com

- sameSite=Strict: Only send cookie if request from same site
(ie, already on bob.com)

- sameSite=Lax: Only send if user is navigating to b.com
(clicking a link), but not for in-page resource loads
— As of 2020, default in most browsers not specified

2/28/23 CSRF and SQL Injection 18

Potential issues

e« SameSite attribute set to Strict:

— the browser will not include the cookie in any requests that
originate from another site.

* Alogged-in user follows a third-party link to a site:

— they will appear not to be logged in, and will need to log in again
before interacting with the site in the normal way

* Potential problems for usability and user tracking (e.g. Ads)

* Not all browsers have adopted default policy for websites
that do not set SameSite

— https://www.chromium.org/updates/same-site/

2/26/23 CSRF and SQL Injection 20

User Interaction

 Make a user reauthenticate, submit a one-time token, or do a
CAPTCHA before performing any user-specific or privileged action
on a website

* Scenario
— Alice is logged into bob.com

— Eve tricks Alice into visiting her page eve.com in another tab, which
automatically redirects to send a malicious request to bob.com

— Alice sees a login page for bob.com, but she thought she was visiting eve.com

* Potential issue: negatively impacts user experience

2/26/23 CSRF and SQL Injection 21

2/28/23

Example CSRF defenses:
TryHackMe

CSRF and SQL Injection

22

Most complex sites use a

database
* Client-supplied data stored into
database
* Access to database mediated by I
server

* Examples: Relational, Document
oriented, ... Database

2/26/23 CSRF and SQL Injection

The Great CS1660(TM) Database

* Student data stored into database
* Access to database mediated by server

Student [5d Server

2/26/23 CSRF and SQL Injection

A CS1660
Database

Standard Query Language (SQL)

 Relational database e SQL describes operations

— Data organized into tables (queries) on a relational database

— Rows represent records and

columns are associated with attribute
attributes
Name ID Grade\ Password admin
record do 4 hassword

2/26/23 CSRF and SQL Injection

One query type: SELECT

SELECT attributes FROM table
WHERE condition; -- comments

* Find records in table (FROM clause) that satisfy a certain
condition (WHERE clause)

* Result returned as table (attributes given by SELECT)

2/26/23 CSRF and SQL Injection

SELECT: Data flow

Server CS1660

Database

| . '
Ul), POST Alice's — ﬁf;Eg;gg‘Ome’ gede

grade WHERE name=Alice

4m 200 0K: Alice, A - Alice | A

Student:

Grade:

2/26/23 CSRF and SQL Injection

SELECT: Data flow

C3S1660

Server

m— POST Alice's

Database

Insert t
access your grade:) e, grade

grade WHERE name=Alice

2/28/23 CSRF and SQL Injection

Example Query: Authentication

SELECT * FROM CS1660 WHERE
Name=%username AND Password = hash($passwd) ;

Password

Bernardo - H(password)

Bob H(bob123)
Alice H(a3dsr87)

2/26/23 CSRF and SQL Injection

Example Query: Authentication

SELECT * FROM CS1660 WHERE
Name=%username AND Password = hash($passwd) ;

» Student sets Susername and Spasswd

* Access granted if query returns nonempty table

2/26/23 CSRF and SQL Injection

UPDATE Function

UPDATE table SET attribute
WHERE condition; -- comments

 Update records in table (UPDATE clause) that satisfy a certain
condition (WHERE clause)

2/28/23 CSRF and SQL Injection

DELETE Function

DELETE FROM table
WHERE condition; -- comments

* Delete records in table (DELETE clause) that satisfy a certain
condition (WHERE clause)

2/28/23 CSRF and SQL Injection

ALTER Function

ALTER TABLE table
ADD element varchar(20); -- comments

* Alter the fields in table (ALTER clause) by adding a newe column
with a certain size (e.g. varchar(20)

2/28/23 CSRF and SQL Injection

db->query ("SELECT * from users where username=" . $user
" AND password = " . S$hash "'");

2/28/23

The problem

* User data could affect query string!

e What can we do??
e How to handle it??

2/28/23 Web Security |

40

SQL Injection

* Attacker bypasses protections on database

— Causes execution of unauthorized queries by
injecting SQL code into the database

A
2

| Server Ko
e

Databas

Attacker

2/26/23 CSRF and SQL Injection

SQL Injection to Bypass Authentication

SELECT * FROM CS1660 WHERE
Name=%username AND Password = hash($passwd) ;

Susername =A'OR1=1 - Spasswd = anything

Resulting query:
SELECT * FROM CS1660 WHERE Name="'A'OR1=1--"AND ...

2/26/23 CSRF and SQL Injection

SQL Injection for Data Corruption

SELECT * FROM CS1660 WHERE
Name=%username AND Password = hash($passwd) ;

* Susername = A'; UPDATE CS1660 SET grade="'A'
WHERE name=Bob" --'

* Spasswd = anything

* Resulting query execution

SELECT * FROM CS1660 WHERE Name ="'A’;
UPDATE CS1660 SET grade='A' WHERE Name=‘Bob' -- AND ...

2/26/23 CSRF and SQL Injection

SQL Injection for Privilege Escalation

SELECT * FROM CS1660 WHERE

Name=%username AND Password =
hash($passwd) ;

e Susername =A'; UPDATE CS1660 SET admin=1
WHERE name=‘Bob" --'

e Spasswd = anything

* Resulting query execution

SELECT * FROM CS1660 WHERE Name ="'A";
UPDATE CS1660 SET admin=1 WHERE name=‘Bob' -- AND ...

2/26/23 CSRF and SQL Injection

HI, THIS 1S OH, DEAR — DID HE DID YOU REALLY
YOUR SON'G SCHOOL. | BREAK SOMETHING? | NAME YOUR SON
WE'RE HAVING SOME IN A WAY Robert'); DROP
CONPUTER TROUBLE. TABLE Students;—— 7

~OH.YES UTTE
BOBBY TABLES,
WE CALL HIM.

Source: http://xkcd.com/327/

2/26/23 CSRF and SQL Injection

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
T HOPE YOURE HAPPY.

d

AND I HOPE
~~ YOUVE LEARNED
L TOSANMZE YOUR
DATARASE INPUTS.

47

What We Have Learned

» Cross-Site Request Forgery (CSRF) attack

* CSRF mitigation techniques
 Web applications with a server-side database

— Architecture and data flow
— Simple SQL queries
* SQL injection
— Example attacks and mitigation techniques

2/26/23 CSRF and SQL Injection

