
Web Security III:
CSRF Mitigation, SQL Injection

CS 1660: Introduction to Computer
Systems Security

CSRF attacks
Browser performs unwanted action while user is
authenticated

2/28/23 Web Security I 2

CSRF: via GET

• Bad practice: state change info encoded in GET
request

• Can easily "replay" request

2/28/23 CSRF and SQL Injection 3

bad-site.com:

<a href="http://bank.com/transfer.php&acct=1234?amt=1000.00?...

CSRF: via POST

CSRF and SQL Injection 2/28/23 4

bad-site.com:

<form action="https://bank.com/wiretransfer" method="POST"

id=”bank">
<input type="hidden" name="recipient" value="Attacker">
<input type="hidden" name="account" value="2567">
<input type="hidden" name="amount" value="$1000.00">
…
</form>
document.getElementById(”bank").submit();

Is user is logged in, this will work!

CSRF Trust Relationships

• Server trusts user
(login)

• User trusts victim
enough to visit
attacker’s site/click
link

• Attacker could be a
hacked legitimate
site

CSRF and SQL Injection

User

Server

AttackerMalicious
Request

Legitimate
Request

Login

2/26/23 5

CSRF: How to defend?

How can we make sure a request comes from
the intended origin?

2/28/23 CSRF and SQL Injection 8

One way: CSRF token

Server sends unguessable value to client, include as
hidden variable in POST

On POST, server compares against expected value,
rejects if wrong or missing

2/28/23 Web Security 2 9

<form action="/transfer.do" method="post">
<input type="hidden" name="csrf_token" value=”aXg3423fjp. . .">
[...]
</form>

What does this prove?

CSRF Token: Mechanics
Different web frameworks handle tokens differently
• Set token per-session or per-request?
• Can include token directly in generated HTML, or use JS to set

via cookie
How to generate the tokens?
• "Synchronizer token": server picks random value, saves for

checking
• "Encrypted token": server sends encrypt/MAC of some value

that can be checked without saving extra state (eg. user ID)
CSRF and SQL Injection 2/28/23 11

CSRF Token Types
Synchronizer Token
• Stateful
• Value randomly generated with

large entropy
• Mapped to user's current session
• Server validates that token exists

and is associated to user's session
ID

Encrypted Token
• Stateless
• Token generated from user ID and

timestamp
• Encrypted with server’s secret key
• Server validates token by verifying it and

checking that it corresponds to current
user and acceptable timestamp

• Ex. Encrypted Token =
HMAC-SHA-1(‘secret key’ + user ID +
timestamp)

CSRF and SQL Injection 2/26/23 13

Another way: checking headers
"Referer" [sic] header: URL from which request is sent

CSRF and SQL Injection 2/26/23 14

Another way: checking headers
• Could check Referer header (or a different header)

on request, see if it matches expected origin
• Browser limits how Referer header can be changed

=> Useful if you trust browser; but ultimately can be
controlled by client

2/28/23 CSRF and SQL Injection 15

Strict SameSite Cookie Attribute
Controls how a cookie is sent when making a cross-site request

• SameSite=None: Always send cookie for any request to b.com
• SameSite=Strict: Only send cookie if request from same site

(ie, already on bob.com)
• SameSite=Lax: Only send if user is navigating to b.com

(clicking a link), but not for in-page resource loads
– As of 2020, default in most browsers not specified

2/28/23 CSRF and SQL Injection 18

Set-Cookie: sessionid=12345; Domain=b.com; SameSite=Strict

Potential issues
• SameSite attribute set to Strict:

– the browser will not include the cookie in any requests that
originate from another site.

• A logged-in user follows a third-party link to a site:
– they will appear not to be logged in, and will need to log in again

before interacting with the site in the normal way
• Potential problems for usability and user tracking (e.g. Ads)
• Not all browsers have adopted default policy for websites

that do not set SameSite
– https://www.chromium.org/updates/same-site/

2/26/23 CSRF and SQL Injection 20

User Interaction
• Make a user reauthenticate, submit a one-time token, or do a

CAPTCHA before performing any user-specific or privileged action
on a website

• Scenario
– Alice is logged into bob.com
– Eve tricks Alice into visiting her page eve.com in another tab, which

automatically redirects to send a malicious request to bob.com
– Alice sees a login page for bob.com, but she thought she was visiting eve.com

• Potential issue: negatively impacts user experience

CSRF and SQL Injection 2/26/23 21

Example CSRF defenses:
TryHackMe

2/28/23 CSRF and SQL Injection 22

Webapps + Databases

2/26/23 CSRF and SQL Injection 26

Most complex sites use a
database

• Client-supplied data stored into
database
• Access to database mediated by

server
• Examples: Relational, Document

oriented, ...

2/26/23 CSRF and SQL Injection 27

Client

Server

Database

The Great CS1660(TM) Database
• Student data stored into database
• Access to database mediated by server

2/26/23 CSRF and SQL Injection 28

Student Server CS1660
Database

Standard Query Language (SQL)
• Relational database

– Data organized into tables
– Rows represent records and

columns are associated with
attributes

• SQL describes operations
(queries) on a relational database

2/26/23 CSRF and SQL Injection 29

Name ID Grade Password admin

Bernardo 345 - H(password) 1
Bob 122 C H(bob123) 0
Alice 543 A H(a3dsr87) 0
...

record

attribute

One query type: SELECT

• Find records in table (FROM clause) that satisfy a certain
condition (WHERE clause)

• Result returned as table (attributes given by SELECT)

2/26/23 CSRF and SQL Injection 30

SELECT attributes FROM table
WHERE condition; -- comments

SELECT: Data flow

2/26/23 CSRF and SQL Injection 31

Alice Server CS1660
Database

POST Alice's
grade

SELECT name, grade
from CS1660
WHERE name=AliceAlice

Insert your name to
access your grade:

Alice A200 OK: Alice, AAlice

A

Student:

Grade:

SELECT: Data flow

2/28/23 CSRF and SQL Injection 32

Alice Server CS1660
Database

POST Alice's
grade

SELECT name, grade
from CS1660
WHERE name=AliceAlice

Insert your name to
access your grade:

Example Query: Authentication

2/26/23 CSRF and SQL Injection 33

Name ID Grade Password admin

Bernardo 345 - H(password) 1
Bob 122 C H(bob123) 0
Alice 543 A H(a3dsr87) 0
...

SELECT * FROM CS1660 WHERE
Name=$username AND Password = hash($passwd) ;

Example Query: Authentication

• Student sets $username and $passwd

• Access granted if query returns nonempty table

2/26/23 CSRF and SQL Injection 34

SELECT * FROM CS1660 WHERE
Name=$username AND Password = hash($passwd) ;

UPDATE Function

• Update records in table (UPDATE clause) that satisfy a certain
condition (WHERE clause)

2/28/23 CSRF and SQL Injection 35

UPDATE table SET attribute
WHERE condition; -- comments

DELETE Function

• Delete records in table (DELETE clause) that satisfy a certain
condition (WHERE clause)

2/28/23 CSRF and SQL Injection 36

DELETE FROM table
WHERE condition; -- comments

ALTER Function

• Alter the fields in table (ALTER clause) by adding a newe column
with a certain size (e.g. varchar(20)

2/28/23 CSRF and SQL Injection 37

ALTER TABLE table
ADD element varchar(20); -- comments

SQL Injection

2/26/23 CSRF and SQL Injection 38

Problem: How to handle user input?

Basic approach:

2/28/23 Web Security I 39

db->query("SELECT * from users where username=" . $user .
" AND password = " . $hash "'");

SELECT attributes FROM users
WHERE user = 'Alice' AND password = '<hash>'

The problem
• User data could affect query string!

• What can we do??
• How to handle it??

2/28/23 Web Security I 40

SQL Injection
• Attacker bypasses protections on database
– Causes execution of unauthorized queries by

injecting SQL code into the database

2/26/23 CSRF and SQL Injection 41

Attacker Server Databas
e

SQL Injection to Bypass Authentication

$username = A' OR 1 = 1 --' $passwd = anything

Resulting query:
SELECT * FROM CS1660 WHERE Name= 'A' OR 1 = 1 --' AND …

2/26/23 CSRF and SQL Injection 42

SELECT * FROM CS1660 WHERE
Name=$username AND Password = hash($passwd) ;

SQL Injection for Data Corruption

• $username = A'; UPDATE CS1660 SET grade='A'
WHERE name=Bob' --'

• $passwd = anything
• Resulting query execution

SELECT * FROM CS1660 WHERE Name = 'A';
UPDATE CS1660 SET grade='A' WHERE Name=‘Bob' -- AND …

2/26/23 CSRF and SQL Injection 43

SELECT * FROM CS1660 WHERE
Name=$username AND Password = hash($passwd) ;

SQL Injection for Privilege Escalation

• $username = A'; UPDATE CS1660 SET admin=1
WHERE name=‘Bob' --'

• $passwd = anything
• Resulting query execution

SELECT * FROM CS1660 WHERE Name = 'A';
UPDATE CS1660 SET admin=1 WHERE name=‘Bob' -- AND …

2/26/23 CSRF and SQL Injection 44

SELECT * FROM CS1660 WHERE
Name=$username AND Password =

hash($passwd) ;

2/26/23 CSRF and SQL Injection 47

Source: http://xkcd.com/327/

What We Have Learned
• Cross-Site Request Forgery (CSRF) attack
• CSRF mitigation techniques
• Web applications with a server-side database
– Architecture and data flow
– Simple SQL queries

• SQL injection
– Example attacks and mitigation techniques

2/26/23 CSRF and SQL Injection 48

