
Web Security II: 
Sessions and Requests, CSRF

CS1660 Introduction to Computer Security

 



What we know so far
• HTTP and Browsers
• Cookies (and what happens if you steal them)
• “Client-side controls”
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Today
• More about requests:  cross-origin/same-

origin
• CSRF attacks
• Session token entropy
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A generic web architecture
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Review: Cookies
Key-value pairs (stored in browser) that keep track of 
certain information
• User preferences, session ID, session expiration, etc.
• Key attributes (so far):
– Domain:  eg. cs.brown.edu .brown.edu
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I
A COOKIE's SCOPE



Review: Cookies
Key-value pairs (stored in browser) that keep track of certain 
information
• User preferences, session ID, tracking, ad networks, etc.
• Key attributes (so far):

– Domain:  eg. cs.brown.edu .brown.edu
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When a request is made, all cookies with a matching domain are sent with it
…subject to certain other browser restrictions (today’s topic!)
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Same origin policy (SOP):  so far
• Limits how a site can set cookies*
• Limits which cookies are sent on each request

In general, “origin” must match:
https://site.example.com[:443]/some/path
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Cookies:  examples
• Session ID:  cookie used for authentication
• App state:  Shopping cart, page views
• Ad networks/tracking
• …
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Javascript
•Scripting language interpreted by browser
•Fetched as part of a page (just like HTML, images)
Capabilities
•Read/modify most page elements
–DOM:  Document Object Model

•Make requests (often asynchronously)
•Powers essentially all modern webapps
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Same Origin Policy: JavaScript
• Scripts loaded from a website have restrictions on accessing 

content from another website (e.g., in another tab)
• All code within <script> … </script> tags is restricted to the 

context of the embedding website
– However, this includes embedded, external scripts
– <script src=“http://mal.com/library.js”></script>
– The code from mal.com can access HTML elements and cookies on our 

website
– Notice: Different from the SOP for third-party cookies
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iframes
• Allows a website to 

“embed” another 
website’s content

• Examples:
– YouTube video embeds
– Embedded Panopto lectures 

on Canvas
• Same origin policy?
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canvas.brown.edu

<iframe>
panopto.com
</iframe>



SOP: iframes
Only code from the same origin can access HTML elements on 

another site (or in an iframe).
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bank.com

bank.com/login_iframe.html

evil.com

bank.com/login_iframe.html

bank.com can access HTML elements in 
the iframe (and vice versa)

evil.com cannot access HTML elements in 
the iframe (and vice versa).



SOP: Requests
Websites can submit requests to another site (e.g., sending a GET / POST 
request, image embedding, Javascript requests (XMLHttpRequest)
• Can generally embed (display in browser) cross-origin response

– Embedding an image
– Opening content / opening the response to a request in an iframe

• Usually can’t read (cross-origin response (i.e. via a script)
–Sometimes websites always allow cross-origin reads
–Why might this be bad?

2/23/23 Web Security I 22



Examples
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What can we do with this?
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Break!

2/23/23 Web Security 2 28



Cross-Site Request Forgery (CSRF)
• Attacker’s site has script that issues a request on target site
• Example

<form action="https://bank.com/wiretransfer" method="POST" id="rob">
<input type="hidden" name="recipient" value="Attacker">
<input type="hidden" name="account" value="2567">
<input type="hidden" name="amount" value="$1000.00">
…
document.getElementById("rob").submit(); 

• If user is already logged in on target site …
• Request is executed by target site on behalf of user

– E.g., funds are transferred from the user to the attacker
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CSRF Trust Relationships
• Server trusts 

victim (login)
• Victim trusts 

attacker  enough 
to click link/visit 
site 

• Attacker could be 
a hacked 
legitimate site
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CSRF Mitigation

• To protect against CSRF attacks, we can use a 
cookie in combination with a POST variable, 
called CSRF token

• POST variables are not available to attacker
• Server validates both cookie and CSRF token
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MORE NEXT CLASS



CSRF Demo
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What We Have Learned
• Motivation and specifications for session 

management
• Session ID implementations
– Cookie
– GET variable
– POST variable

• Cross-Site Request Forgery (CSRF) attack
• CSRF mitigation techniques
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