
Web Security II:
Sessions and Requests, CSRF

CS1660 Introduction to Computer Security

What we know so far
• HTTP and Browsers
• Cookies (and what happens if you steal them)
• “Client-side controls”

2/23/23 Web Security 2 2

Today
• More about requests: cross-origin/same-

origin
• CSRF attacks
• Session token entropy

2/23/23 Web Security 2 3

A generic web architecture

2/23/23 Web Security 2 4

Client I cookies
SERVER

BROWSER

Bronson 1 571 3Wgspsing
RENDERS

É Y
SERVER SIDE

HTML
CODE

RELIENTSIDE PARGOPythonpipeMPH
NODECODE IS

MOSTLYJAVASCRIPT
1

BACKEND

Review: Cookies
Key-value pairs (stored in browser) that keep track of
certain information
• User preferences, session ID, session expiration, etc.
• Key attributes (so far):
– Domain: eg. cs.brown.edu .brown.edu

2/23/23 Web Security 2 7

I
A COOKIE's SCOPE

Review: Cookies
Key-value pairs (stored in browser) that keep track of certain
information
• User preferences, session ID, tracking, ad networks, etc.
• Key attributes (so far):

– Domain: eg. cs.brown.edu .brown.edu

2/23/23 Web Security 2 8

When a request is made, all cookies with a matching domain are sent with it
…subject to certain other browser restrictions (today’s topic!)

PARTOFme or16
N

f
POLICY

Same origin policy (SOP): so far
• Limits how a site can set cookies*
• Limits which cookies are sent on each request

In general, “origin” must match:
https://site.example.com[:443]/some/path

2/23/23 Web Security 2 9

IF 120,30ALL
MATCH SITEIS

y 7HostnAMIport number
protocol

HTTP or
HIPS DEFAULT IF OMITTED

Cookies: examples
• Session ID: cookie used for authentication
• App state: Shopping cart, page views
• Ad networks/tracking
• …

2/23/23 Web Security 2 10

Javascript
•Scripting language interpreted by browser
•Fetched as part of a page (just like HTML, images)
Capabilities
•Read/modify most page elements
–DOM: Document Object Model

•Make requests (often asynchronously)
•Powers essentially all modern webapps

2/23/23 Web Security I 16

Same Origin Policy: JavaScript
• Scripts loaded from a website have restrictions on accessing

content from another website (e.g., in another tab)
• All code within <script> … </script> tags is restricted to the

context of the embedding website
– However, this includes embedded, external scripts
– <script src=“http://mal.com/library.js”></script>
– The code from mal.com can access HTML elements and cookies on our

website
– Notice: Different from the SOP for third-party cookies

2/23/23 Web Security I 17

iframes
• Allows a website to

“embed” another
website’s content

• Examples:
– YouTube video embeds
– Embedded Panopto lectures

on Canvas
• Same origin policy?

2/23/23 Web Security I 20

canvas.brown.edu

<iframe>
panopto.com
</iframe>

SOP: iframes
Only code from the same origin can access HTML elements on

another site (or in an iframe).

2/23/23 Web Security I 21

bank.com

bank.com/login_iframe.html

evil.com

bank.com/login_iframe.html

bank.com can access HTML elements in
the iframe (and vice versa)

evil.com cannot access HTML elements in
the iframe (and vice versa).

SOP: Requests
Websites can submit requests to another site (e.g., sending a GET / POST
request, image embedding, Javascript requests (XMLHttpRequest)
• Can generally embed (display in browser) cross-origin response

– Embedding an image
– Opening content / opening the response to a request in an iframe

• Usually can’t read (cross-origin response (i.e. via a script)
–Sometimes websites always allow cross-origin reads
–Why might this be bad?

2/23/23 Web Security I 22

Examples

2/23/23 Web Security I 23

What can we do with this?

2/23/23 Web Security I 24

Break!

2/23/23 Web Security 2 28

Cross-Site Request Forgery (CSRF)
• Attacker’s site has script that issues a request on target site
• Example

<form action="https://bank.com/wiretransfer" method="POST" id="rob">
<input type="hidden" name="recipient" value="Attacker">
<input type="hidden" name="account" value="2567">
<input type="hidden" name="amount" value="$1000.00">
…
document.getElementById("rob").submit();

• If user is already logged in on target site …
• Request is executed by target site on behalf of user

– E.g., funds are transferred from the user to the attacker

2/23/23 Web Security 2 29

CSRF Trust Relationships
• Server trusts

victim (login)
• Victim trusts

attacker enough
to click link/visit
site

• Attacker could be
a hacked
legitimate site

2/23/23 Web Security 2 30

Victim

Server

AttackerMalicious
Request

Legitimate
Request

Login

session

I

CSRF Mitigation

• To protect against CSRF attacks, we can use a
cookie in combination with a POST variable,
called CSRF token

• POST variables are not available to attacker
• Server validates both cookie and CSRF token

2/23/23 Web Security 2 33

MORE NEXT CLASS

CSRF Demo

2/23/23 Web Security 2 43

What We Have Learned
• Motivation and specifications for session

management
• Session ID implementations
– Cookie
– GET variable
– POST variable

• Cross-Site Request Forgery (CSRF) attack
• CSRF mitigation techniques
2/23/23 Web Security 2 46

