

What we know so far

e HTTP and Browsers
* Cookies (and what happens if you steal them)
* “Client-side controls”

2/23/23 Web Security 2

Today

* More about requests: cross-origin/same-
origin

* CSRF attacks

* Session token entropy

2/23/23 Web Security 2

A generic web architecture

Py 7
CLismr \ - o %’Z e
(Browset :
) Arrp eer/ poT > (0w Jenvo~
ﬁ,@owﬂ:’ﬂ\ GET IWDEF. NTML APP
Rev 3’5’15 {— ——— N SEpuEn. = SIE -
NTHG, RELPopse
F YME L/ CPE
Clenr=sioe Nyl 4t N9 L Bymon
ZoDE Js, -~ D/Q MODE, ..
s guascet) e

L
2/23/23 "Web Security 2 4

Review: Cookies

Key-value pairs (stored in browser) that keep track of
certain information

* User preferences, session ID, session expiration, etc.

e Key attributes (so far):
— Domain: eg. cs.brown.edu .brown.ﬂu

—

\)
A,A Cookie s “(core ”

2/23/23 Web Security 2

Review: Cookies

Key-value pairs (stored in browser) that keep track of certain
information

* User preferences, session ID, tracking, ad networks, etc.

« Key attributes (so far): @M’ QF/I(E’ (%/Q/U
— Domain: eg. cs.brown.edu .brown.edu (A >/
L/ 7oL C

When a request is made, all cookies with a matching domain are sent with it
...subject to certain other browser restrictions (today’s topic!)

2/23/23 Web Security 2 8

Same origin policy (SOP): so far

* Limits how a site can set cookies™
* Limits which cookies are sent on each request

In general, “origin” must match: g’
https://site .(;xample .com[:443] /some/path
\ — e e——

\\’ A [5 NS TVAME /\ 4
(ﬁmwa’ [F oMITTE
2/23/23 /7—6“ 77P ot H TVCfb?SZcurity 2 9

Cookies: examples

* Session ID: cookie used for authentication
* App state: Shopping cart, page views
* Ad networks/tracking

2/23/23 Web Security 2 10

Javascript

*Scripting language interpreted by browser
*Fetched as part of a page (just like HTML, images)
Capabilities

*Read/modify most page elements
—DOM: Document Object Model

*Make requests (often asynchronously)
*Powers essentially all modern webapps

2/23/23 Web Security |

16

Same Origin Policy: JavaScript

Scripts loaded from a website have restrictions on accessing

content from another website (e.g., in another tab)

All code within <script> . </script> tags is restricted to the

context of the embedding website

2/23/23

However, this includes embedded, external scripts

<script src=*http://mal.com/library.js”></script>
The code from mal.com can access HTML elements and cookies on our
website

Notice: Different from the SOP for third-party cookies

Web Security | 17

HEINER

 Allows a website to
“embed” another
website’s content

 Examples:
— YouTube video embeds
— Embedded Panopto lectures
on Canvas

 Same origin policy?

2/23/23 Web Security |

canvas.brown.edu

<iframe>
panopto.com
</iframe>

20

SOP: iframes

Only code from the same origin can access HTML elements on
another site (or in an iframe).

evil.com

bank.com can access HTML elements in evil.com cannot access HTML elements in
the iframe (and vice versa) the iframe (and vice versa).

2/23/23 Web Security | 21

SOP: Requests

Websites can submit requests to another site (e.g., sending a GET / POST
request, image embedding, Javascript requests (XMLHttpRequest)

* Can generally embed (display in browser) cross-origin response
— Embedding an image
— Opening content / opening the response to a request in an iframe

e Usually can’t read (cross-origin response (i.e. via a script)

—Sometimes websites always allow cross-origin reads
— Why might this be bad?

2/23/23 Web Security |

22

Cross-Site Request Forgery (CSRF)

» Attacker’s site has script that issues a request on target site

* Example

<form action="https://bank.com/wiretransfer" method="POST" id="rob">
<input type="hidden" name="recipient" value="Attacker">

<input type="hidden" name="account"” value="2567">

<input type="hidden" name="amount" value="$1000.00">

document.getElementById("rob").submit();
* |Ifuseris already logged in on target site ...
* Request is executed by target site on behalf of user

— E.g., funds are transferred from the user to the attacker

2/23/23 Web Security 2 29

CSRF Trust Relationships

Legitimate
Request

* Server trusts
victim (login) G

 Victim trusts
attacker enough
to click link/visit
site

e Attacker could be
a hacked
legitimate site Server

Malicious Attacker
Request

2/23/23 Web Security 2 30

CSRF Mitigation

* To protect against CSRF attacks, we can use a
cookie in combination with a POST variable,
called CSRF token

e POST variables are not available to attacker

e Server validates both cookie and CSRF token

/V]o,u: NEIM Qﬂsx[

2/23/23 Web Security 2

33

2/23/23

What We Have Learned

* Motivation and specifications for session
management

* Session ID implementations

— Cookie
— GET variable
— POST variable

* Cross-Site Request Forgery (CSRF) attack
* CSRF mitigation techniques

2/23/23 Web Security 2

46

