
5 4 3 2 1

Countdown

0123456789101112131415161718192021222324252627282930

Class is starting now!

.5

Web Security 2:
Session Management

SOP JavaScript and iframes
CS166 Introduction to Computer Security

Web Intro

Benefits of the Web
• A web browser is usually sufficient, typically preinstalled and free
• No upgrade procedure, since all new features are implemented on

the server and automatically delivered to the users
• Cross-platform compatibility in most cases (i.e., Windows, Mac,

Linux, etc.) , everything happens in a web browser window
• Easy to integrate into other server-side web procedures (i.e. email,

searching, localization etc.)
• HTML5 allows the creation of richly interactive environments

natively within browsers

Web Security 22/16/23 4

Web Architecture
A web site usually is a collection of web pages
that are:

– Accessed by users over a network through the
HTTP or HTTPS protocol

– Coded in a browser-supported programming
language (i.e JavaScript, HTML, etc.)

– Used through a common web browser (EDGE,
Firefox, Chrome, Safari, Opera, etc.) to render
the pages executable, with usually the help of
some cookies

– Managed by a web application with a client–
server architecture (i.e. 3-tiers) in which
Presentation, Logic, and Data tiers are logically
separated

Web Security 22/16/23 5

• Most of our trust on web security relies on information
stored in the Browser:
– A Browser should be updated since Bugs in the browser

implementation can lead to various attacks
https://us-cert.cisa.gov/ncas/current-activity/2023/02/14/mozilla-releases-
security-updates-firefox-110-and-firefox-esr
– Add-ons too are dangerous

– Hacking Team flash exploits - goo.gl/syVwiD
– github.com/greatsuspender/thegreatsuspender/issues/1263

– Executing a browser with low privileges helps

In BROWSER we trust…

Web Security 22/16/23 6

OWASP Top Ten (2013-17)

Web Security 2

OWASP 2013 -2017

Just OWASP 2017

2/16/23 7

Owasp 2017 - 2021

Web Security 22/16/23 8

www.owasp.org/index.php/Top_10

Cookies

2/16/23 Web Security I 9

Cookies
• HTTP is a stateless protocol; cookies used to emulate state
• Servers can store cookies (name-value pairs) into browser

• Used for user preferences (e.g., language and page layout),
user tracking, authentication

• Expiration date can be set
• May contain sensitive information (e.g., for user authentication)

• Browser sends back cookies to server on the next connection

2/16/23 Web Security I 10

POST /login.php HTTP/1.1
Set-Cookie: Name: sessionid

Value: 19daj3kdop8gx
Domain: cs.brown.edu
Expires: Wed, 21 Oct 2021 …

Cookie Scope
• Each cookie has a scope

– Base domain, which is a given host (e.g., brown.edu)
– Plus, optionally, all its subdomains (cs.brown.edu,

math.brown.edu, www.cs.brown.edu , etc.)
• For ease of notation, we denote with . the inclusion

of subdomains (e.g., .brown.edu)
– This isn’t the real notation—it’s actually specified in HTTP
with the "Domain:" attribute of a cookie

2/16/23 Web Security I 11

Same Origin Policy: Cookie Reads
Websites can only read cookies within their scope

2/16/23 Web Security I 12

• Example: browser has
cookies with scope
brown.edu
.brown.edu,
.math.brown.edu
cs.brown.edu
.cs.brown.edu,
help.cs.brown.edu

• Browser accesses
cs.brown.edu

• Browser sends cookies with
scope
.brown.edu
cs.brown.edu
.cs.brown.edu

Same Origin Policy: Cookie Writes
A website can set cookies for (1) its base domain; or
(2) a super domain (except TLDs) and its subdomains

2/16/23 Web Security I 13

• But not for
google.com
.com
math.brown.edu
brown.edu
…

• Browser accesses
cs.brown.edu

• cs.brown.edu can set
cookies for
.brown.edu
cs.brown.edu

Clicker Question #1
If the browser accesses cs.brown.edu, the server can set
cookies with which of the following scopes?
A. .brown.edu
B. only math.brown.edu
C. only help.cs.brown.edu
D. All of the above
E. None of the above

142/16/23 Web Security I

Answer
If the browser accesses cs.brown.edu, the server can set
cookies with which of the following scopes?
A. .brown.edu
B. only math.brown.edu
C. only help.cs.brown.edu
…
The scope is cs.brown.edu by default
The server can optionally set cookies with scope
.cs.brown.edu and .brown.edu, but nothing else

152/16/23 Web Security I

User Tracking
• Done mainly through cookies
• Keeps track of users and informaBon about them

– Could be their online habits, behaviors, and preferences
– Could also be demographics — race, gender, age, etc.

• Can be used in a (arguably) benign manner
– Used for company sta;s;cs
– Personalized content feeds and targeted adver;sing

• Can also be used malevolently
– Can be viewed as infringing on privacy rights
– Ex: Facebook—Cambridge Analy;ca Scandal in 2018

Web Security 22/16/23 16

User Tracking Legislation
• Controversies as well as users' concerns about their privacy has led to regulations

– GDPR (General Data Protection Regulation)
• 2016 European Union Law
• Requires entities to obtain user consent for their information (Ex: cookies)
• Holds companies accountable for breaches through fines

– CCPA (California Consumer Privacy Act)
• 2018 state statute
• Prevents selling data to third parties ("Do not sell my personal information")
• Right to know about one's data and who has access to it

– Do Not Track Me legislation
• Various bills and acts since 2010
• Places certain restrictions on what kind of information may be collected
• Requires companies to provide clear notice and the ability to opt out

Web Security 22/16/23 17

Web Access Control
• Authentication
– Username and password, additional factors

• Session management
– Keep track of authenticated users across sequence of

requests

• Authorization
– Check and enforce permissions of authenticated users

Web Security 22/16/23 18

Session Management
• Session

– Keep track of client over a
series of requests

– Server assigns clients a
unique, unguessable ID

– Clients send back ID to verify
themselves

• Session
– Necessary in sites with

authenAcaAon (e.g., banking)
– Useful in most other sites

(e.g., remembering
preferences)

• Various methods to
implement them (mainly
cookies), but also could be
in HTTP variables

2/16/23 Web Security I 19

• Goal
– Users should not have to authenticate for every single request

• Problem
– HTTP is stateless

• Solution
– User logs in once
– Server generate session ID and gives it to browser

• Temporary token that identifies and authenticates user
– Browser returns session ID to server in subsequent requests

Session Management: goal

Web Security 22/16/23 20

Specifications for a Session ID
• Created by server upon successful user authentication

– Generated as long random string
– Associated with scope (set of domains) and expiration
– Sent to browser

• Kept as secret shared by browser and server
• Transmitted by browser at each subsequent request to server

– Must use secure channel between browser and server
• Session ID becomes invalid after expiration

– User asked to authenticate again

Web Security 22/16/23 21

Third-Party Cookies
• Cookies are set and returned in

each HTTP request and response
• Accessing a site can result in HTTP

requests to various domains
– E.g., embedded images can be loaded

from other domains
• Third-party cookie

– Set by server with domain
different from that of original
request (e.g., ad network)

• Example
– Site brown.edu embeds

YouTube videos
– Accessing brown.edu

results in third-party
cookies set by
youtube.com

• Browser can be
configured not to store
third-party cookies
(recommended)

2/16/23 Web Security I 22

Implementation of Session ID
• Cookie

– Transmitted in HTTP headers
– Set-Cookie: SID=c5Wuk7…
– Cookie: SID=c5Wuk7…

• GET variable
– Added to URLs in links
– https://www.example.com?SID=c5Wuk7…

• POST variable
– Navigation via POST requests with hidden variable
– <input type="hidden" name="SID" value="c5Wuk7…">

Web Security 22/16/23 23

Session ID in Cookie

Web Security 2

Browser ServerHTTP/1.1 200 OK
Set-Cookie: SID=c5Wuk7…;

POST /login HTTP/1.1
Host: www.example.com
Username: cs166ta
Password: Ilove166

GET /profile.html HTTP/1.1
Host: www.example.com
Cookie: SID=c5Wuk7…;

2/16/23 24

Session ID in Cookie
• Advantages

– Cookies automatically returned by browser
– Cookie attributes provide support for expiration, restriction to secure

transmission (HTTPS), and blocking JavaScript access (httponly)
• Disadvantages

– Cookies are shared among all browser tabs (not browsers or incognito)
– Cookies are returned by browser even when request to server is made

from element (e.g., image or form) within page from other server
– This may cause browser to send cookies in context not intended by

user

Web Security 22/16/23 25

POST /login HTTP/1.1
Host: www.example.com
Username: cs166ta
Password: Ilove166

Session ID in GET Variable

Web Security 2

Browser Server
HTTP/1.1 200 OK
<html>
…
<a href= /̎profile.html?SID=c5Wuk7… ̎
…

GET /profile.html?SID=c5Wuk7… HTTP/1.1
Host: www.example.com

2/16/23 26

Session ID in GET Variable
• Advantages

– Session ID transmitted to server only when intended by user
• Disadvantages

– Session ID inadvertently transmitted when user shares URL
– Session ID transmitted to third-party site within referrer
– Session ID exposed by bookmarking and logging
– Server needs to dynamically generate pages to customize site

navigation links and POST actions for each user
– Transmission of session ID needs to be restricted to HTTPS on

every link and POST action

Web Security 22/16/23 27

Session ID in POST Variable

Web Security 2

Browser Server

POST /login HTTP/1.1
Host: www.example.com
Username: cs166ta
Password: Ilove166

POST /profile HTTP/1.1
Host: www.example.com
SID=c5Wuk7…

HTTP/1.1 200 OK
…

<form … method="POST” …
name="SID”
value=" c5Wuk7… "

HTTP/1.1 200 OK
…

<form method="POST”
ac;on="…/profile"
name="SID”
value="c5Wuk7… "

2/16/23 28

Session ID in POST Variable
• Advantages

– Session ID transmiRed to server only when intended by user
– Session ID not present in URL, hence not logged, bookmarked, or

transmiRed within referrer

• Disadvantages
– NavigaAon must be made via POST requests
– Server needs to dynamically generate pages to customize forms for

each user
– Transmission of session ID needs to be restricted to HTTPS on every

link and POST acAon

Web Security 22/16/23 29

Clicker QuesTon 2
In the cookie implementation of session tokens, how is the
token transmitted to/from the server?

A. Included as a parameter in the URL
B. As a hidden variable in the initial POST request
C. As an additional field when the user authenticates
D. In the HTTP header (both request and response)

Web Security 22/16/23 30

Answer to Clicker Question 1
In the cookie implementation of session tokens, how is the
token transmitted to/from the server?

A. Included as a parameter in the URL
B. As a hidden variable in the initial POST request
C. As an additional field when the user authenticates
D. In the HTTP header (both request and response)

Web Security 22/16/23 31

1. Remove cookies erases authentication
– Server makes us log in again

2. Cookie stealing for authentication
3. Close session you do not remove server cookie
4. Logout and session cookie removed on client and server
5. Remember me checkbox on the login

– Cookie does not expire in the browser but also on the server
6. If we disable cookies, can not sign in to most websites
7. Burp analysis for the entropy of session cookies
Note: In particular for last demos, Browsers can have different policies

DEMO

Web Security 22/16/23 32

0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Break!!!!!

0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Class is starting now!

SOP: JavaScript and iframes

JavaScript
• Programming language

interpreted by the browser
• Code embedded within

<script> … </script> tags
• Defining func`ons:

<script
type="text/javascript">
function hello() {
alert("Hello world!");}

</script>

• Examples:
• Read / modify elements of the DOM

– “Look for all <p> tags and return the
content”

– “Change the content within all tags
to _____”

• Open another window
window.open("http://brown.edu")

• Read cookies
alert(document.cookie);

Web Security 22/16/23 35

Same Origin Policy: JavaScript
• Scripts loaded from a website have restrictions on accessing

content from another website (e.g., in another tab)
• All code within <script> … </script> tags is restricted to the

context of the embedding website
– However, this includes embedded, external scripts
– <script src=“http://mal.com/library.js”></script>
– The code from mal.com can access HTML elements and cookies on our

website
– Notice: Different from the SOP for third-party cookies

Web Security 22/16/23 36

Clicker Question #3
Say our website is example.com, and we’ve embedded the
script from mal.com in our website. If the script from
mal.com sets a cookie, under which origin can it / will it be
set?
A. example.com
B. mal.com
C. All of the above
D. None of the above

Web Security 22/16/23 37

Answer
Say our website is example.com, and we’ve embedded the
script from mal.com in our website. If the script from
mal.com sets a cookie, under which origin will it be set?
A. example.com
Scripts run within the context of the embedding website, so
the script from mal.com can set a cookie for example.com
(but not for mal.com).

Web Security 22/16/23 38

iframes
• Allows a website to

“embed” another
website’s content

• Examples:
– YouTube video embeds
– Embedded Panopto lectures

on Canvas
• Same origin policy?

Web Security 2

canvas.brown.edu

<iframe>
panopto.com
</iframe>

2/16/23 39

SOP: DOM Reads
Only code from the same origin can access HTML elements on

another site (or in an iframe).

Web Security 2

bank.com

bank.com/login_iframe.html

evil.com

bank.com/login_iframe.html

bank.com can access HTML elements in
the iframe (and vice versa)

evil.com cannot access HTML elements in
the iframe (and vice versa).

2/16/23 40

SOP: Requests
• Websites can submit requests to another site (e.g., sending a GET / POST

request, image embedding, XMLHttpRequest)
• Can generally embed (display in browser) cross-origin response

– Embedding an image
– Opening content / opening the response to a request in an iframe

• Cannot generally read (compute on) cross-origin response (i.e. via a script)
– Unless website explicitly allows it
– Sometimes websites always allow cross-origin reads
–Why might this be bad?

• Very subtle point: websites can display request responses on pages even
though they can’t read the response content themselves

Web Security 22/16/23 41

SOP: Foreshadowing
• To reiterate: Websites can submit requests to another site

– …and can display the responses on their own site (via iframe, img, etc.)
– …but can’t read the responses themselves (i.e. via a script)

• Foreshadowing: Acacker can s`ll accomplish a lot with just
sending out requests …

Web Security 22/16/23 42

Bringing Everything Together…
• Cookies often contain an authentication token
– Stealing a cookie == accessing account

• Perhaps your web application uses JavaScript to
validate client-side input…
– i.e. “You can only make ED posts with alphanumeric characters”

• What if I disable JavaScript on my browser?
– No more client-side check
– Can potentially inject HTML code; links; JavaScript into the web

application…

Web Security 22/16/23 43

Cross-Site Request Forgery (CSRF)

Cross-Site Request Forgery (CSRF)
• Attacker’s site has script that issues a request on target site
• Example

<form action="https://bank.com/wiretransfer" method="POST" id="rob">
<input type="hidden" name="recipient" value="Attacker">
<input type="hidden" name="account" value="2567">
<input type="hidden" name="amount" value="$1000.00">
…
document.getElementById("rob").submit();

• If user is already logged in on target site …
• Request is executed by target site on behalf of user

– E.g., funds are transferred from the user to the attacker

Web Security 22/16/23 45

CSRF Trust Relationships

• Server trusts
vic9m (login)

• Vic9m trusts
a>acker

• A>acker could
be a hacked
legi9mate site

Web Security 2

Victim

Server

AMackerMalicious
Request

Legitimate
Request

Login

2/16/23 46

Clicker Question 4
Cross-Site Request Forgery relies primarily on which of the
following trust relationships?

A. Server trusting victim
B. Victim trusting attacker
C. Server trusting attacker
D. Both A and B
E. All of the above

Web Security 22/16/23 47

Clicker Question 4 - Answer
Cross-Site Request Forgery relies primarily on which of the
following trust rela`onships?

A. Server trus`ng vic`m
B. Vic`m trus`ng acacker
C. Server trus`ng acacker
D. Both A and B
E. All of the above

Web Security 22/16/23 48

CSRF MiTgaTon

• To protect against CSRF attacks, we can use a
cookie in combination with a POST variable,
called CSRF token

• POST variables are not available to attacker
• Server validates both cookie and CSRF token

Web Security 22/16/23 49

CSRF Token
• Token included as hidden parameter in POST
• Server-side validation

– Action rejected if token is incorrect or missing

• Per-session tokens:
– One token generated for current session and used for all requests

• Per-request tokens:
– Randomize parameter name and/or value
– Higher security but some usability concerns (e.g., back button

functionality)
Web Security 22/16/23 50

Token Patterns
Synchronizer Token
• Stateful
• Value randomly generated

with large entropy
• Mapped to user's current

session
• Server validates that token

exists and is associated to
user's session ID

Encrypted Token
• Stateless
• Token generated from user ID and

timestamp
• Encrypted with server’s secret key
• Server validates token by

decrypting it and checking that it
corresponds to current user and
acceptable timestamp

Web Security 22/16/23 51

Verifying Source Origin
• Check that source origin matches target origin

– "Referer" header: entire URL of page from which request is sent
– "Referer" used by some websites for logging and analytics
– "Origin" header: hostname of page from which request is sent

• Scenario
– Alice is logged into bob.com
– Eve tricks Alice into visiting eve.com, which sends a malicious request to

bob.com on behalf of Alice
– Bob.com checks for Referer/Origin header
– If present and value matches target domain, allow request; else, block

• Potential issue: Referer/Origin headers not always present for all requests
Web Security 22/16/23 53

Custom Request Headers
• Check presence of some custom header, block request if absent
• Only way to set custom headers is through JavaScript

– JavaScript unable to make cross-site requests due to Same-Origin-Policy

• Scenario
– Alice is logged into bob.com
– bob.com requires all incoming requests to contain header Bobs-Header
– Bobs-Header set by JavaScript code present on each page of bob.com
– Eve tricks Alice into visi;ng eve.com, which sends malicious request to

bob.com on behalf of Alice
– bob.com blocks Eve's request because Eve is unable to construct the request

to include Bobs-Header
Web Security 22/16/23 54

Strict SameSite Cookie A\ribute
• Browser will only send cookie if the site for the stored cookie

matches the URL of the page making the request
• Scenario

– Alice logs in to bob.com, which sets cookie:
Set-Cookie: sessionid=12345; Domain=bob.com; SameSite=Strict

– Eve tricks Alice into visiting her page eve.com, which sends a malicious request
to bob.com on behalf of Alice

– Since the cookie has SameSite set to Strict, Alice's browser does not send
sessionid to bob.com from eve.com

• Potential issue: Not all browsers have adopted default policy for
websites that do not set SameSite

Web Security 22/16/23 55

User Interaction
• Make a user reauthenticate, submit a one-time token, or do a

CAPTCHA before performing any user-specific or privileged action
on a website

• Scenario
– Alice is logged into bob.com
– Eve tricks Alice into visiting her page eve.com in another tab, which

automatically redirects to send a malicious request to bob.com
– Alice sees a login page for bob.com, but she thought she was visiting eve.com

• Potential issue: negatively impacts user experience

Web Security 22/16/23 56

Clicker Question 5
Which of the following measures can help a user defending
against CSRF attacks?
A. Accessing potentially malicious sites only with an

incognito window
B. Accessing trusted sites only via HTTPS
C. All of the above
D. None of the above

Web Security 22/16/23 57

Answer to Clicker Question 4
Which of the following measures can help a user defending
against CSRF acacks?
A. Accessing poten`ally malicious sites only with an

incognito window
B. Accessing trusted sites only via HTTPS
C. All of the above
D. None of the above

Web Security 22/16/23 58

What We Have Learned
• Motivation and specifications for session

management
• Session ID implementations
– Cookie
– GET variable
– POST variable

• Cross-Site Request Forgery (CSRF) attack
• CSRF mitigation techniques

Web Security 22/16/23 59

CSRF Demo

Web Security 22/16/23 60

