Countdown

-
—I—I—I—I—I—O—I—I—I—I—I—O—I—I—I—I—I-O-H-G
. | A

&

f?
& Q_b

Glﬂ%ss is startlns now!

Web Security |

Web Security Models
Browser Security
Web Technologies and Protocols

2/14/23 Web Security |

AAA (recap

|dentification, Authentication, Authorization, Accounting, Auditing
— AAA Working Group, IETF

Identification g Credentials, UserID, etc.
Authentication Factors, Proofs, etc.

Authorizationl Rights, Permissions,
Privileges, ACL, etc.

AccesS§ Control

Security Rieference\A

Monitor‘ =P Accounting
AcCcess — =P Ayditing

2/14/23 CS 166 p

Web Applications

Server

2/14/23 Web Security |

Threat Models

web attacker
— 0 \—
Browser w}
responses

1 Server
malwarg, 3 network
compromise \
_ attacker)
client Q /D!nial Of Service

(DOS) attacks, or
malware

2/14/23 Web Security |

Network Attacks

@o—

Source Destination

Standard Flow

Source Destination

Wiretapping (sniffing)

Destination

Attacker in the Middle (active)

o—1 o

Source Destination

Block (DoS)

Source * Destination

Attacker in the Middle (passive)

Source Destination

Creation (spoofing)

Web Attacker Capabilities

* Attacker controls malicious website
— Website might look professional, legitimate, etc.
— Attacker can get users to visit website (how?)

 Good website is compromised by attacker
— Attacker inserts malicious content into website
— Attacker steals sensitive data from website

" Attacker does not have direct access to
user's machine

2/14/23 Web Security |

Potential Damage

* An attacker gets you to visit a malicious
website

— Can they perform actions on other websites
impersonating you?

— Can they run evil code on your OS?

* |deally, none of these exploits are possible ...

2/14/23 Web Security |

Attack Vectors

* Web browser (focus of this lecture)
— Renders web content (HTML pages, scripts)
— Responsible for confining web content

— Note: Browser implementations dictate what websites
can do

* Web applications
— Server code (PHP, Ruby, Python, ...)
— Client-side code (JavaScript)
— Many potential bugs (which you’ll explore in Project 2 ©)

2/14/23 Web Security |

10

Browser Security: Sandbox

 Goal: protect local computer from web attacker
— Safely execute code on a website
— ... without the code accessing your files, tampering
with your network, accessing other sites
* High stakes (S30K bounty for Google Chrome ;
www.google.com/about/appsecurity/chrome-rewards/)
* We won't address attacks that break the sandbox

But they happen check the CVE list

— https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=sandbox
— https://support.apple.com/en-us/HT213635

2/14/23 Web Security |

11

https://chromereleases.googleblog.com/2022/02/stable-channel-update-for-desktop_14.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0609

URL and FQDN

URL Uniform Resource Locator * FQDN (Fully Qualified Domain Name)

* |Host name].[Domain].[TLD].[Root
cs.brown.edu/about/ [L D] [Root]
 Two or more labels, separated by

contacts.htmi dots (e.g., cs.brown.edu)

* = (e.g. https), Root name server
a FODN (e.g. cs.brown.edu) It is a “.” at the end of the FQDN

* apath and file name (e.g. * Top-level domain (TLD)
/about/contacts.html). e Generic (gTLD), .com, .org, .net, ...

e Country-code (ccTLD), .ca, .it, ...

2/14/23 DosS, DNS, TLS 13

google.com

google.com 66.249.91.104

Xxx.google.com #i

14/02/23

XXX.com

XXX.com

XXX.com
XXX.com
XXX.com
XXX.com
XXX.com
XXX.com
XXX.com
XXX.com
XXX.com
XXX.com
XXX.com
XXX.com
XXX.com
XXX.com
XXX.com

HIHHH
HHHHH
HIHHH
HIHHH
HIHHH
HIHHH
HIHHH I
HIHHH
HHHHH
HHHHH
I
HHHH
HHHHHHER
HHHHHH
HHHHHHH
HHHHHH
HHHH

AN
microsoft.com

Amicrosoft.com 207.46.232.182

A xxxx.microsoft.com #t#iH

A xxx.microsoft.com ## i1

A xxxx.microsoft.com # i #HH#

A xxx.microsoft.com #i i #HH#
xxx.microsoft.com #iHiHitH#HiH
xxx.microsoft.com #i#HiHiH#Hi#H
xxx.microsoft.com #i#iHiH#Hi#H
xxx.microsoft.com #i#HiHiH#Hi#H
Xxx.microsoft.com i HH##HHHH##H
xxx.microsoft.com #i#iHn it
xxx.microsoft.com #i#HiHitH#HiH
xxx.microsoft.com #i#HiHiH#HiH
xxx.microsoft.com #i#HiHiH#Hi#H
xxx.microsoft.com #i#HiHitH#Hi#H
xxx.microsoft.com #iHiHitH#HiH

Root (.)

Domain Hierarchy

xxx.edu
xxx.edu
xxx.edu
xxx.edu

stanford.edu

stanford.edu 171.67.216.18

xxx.stanford.edu 171.67.###.#i#t#
xxx.stanford.edu 171.67.###.##t#
xxx.stanford.edu 171.67.###.##t#
xxx.stanford.edu 171.67.###.##t#
xxx.stanford.edu 171.67.###.##t#
xxx.stanford.edu 171.67.###.##t#
xxx.stanford.edu 171.67.###.##t#
xxx.stanford.edu 171.67.###.##t#
xxx.stanford.edu 171.67.###.##t#
xxx.stanford.edu L71.67.###.##t#
xxx.stanford.edu :.71.67.###. ##t#
xxx.stanford.edu 171.67.###.###
xxx.stanford.edu 171.67 ### #it

resource records

xxx.edu
xxx.edu
xxx.edu
xxx.edu
xxx.edu
xxx.edu
xxx.edu
xxx edu
»ax.edu
Vooo.edu

HHHHH
HHHHHH
HHHHH
HHHHH
HHHHH
HHHHHH
HHHHHH
HHHHH
HHHHH
R
HHHHHH
HHHHH
HHHHH
HHHHH

brown.edu

brown.edu 128.148.128.180

xxx.brown.edu 128.148 ### ###
xxx.brown.edu 128.148 ### ###
xxx.brown.edu 128.148 ### ###
xxx.brown.edu 128.148 ### ###
xxx.brown.edu 128.148 ### ###
xxx.brown.edu 128.148 ### ###
xxx.brown.edu 128.148 #### ###
xxx.brown.edr: 128.148 ### ###
xxx.brown.edu 128.148 ### ###
xxr.urown.edu 128.148 #i ###

Aoc.brown.edu 128.148 #i ###

xxx.brown.edu 128.148 ### ###
xxx.brown.edu 128.148 ### ###
xxx.brown.edu 128.148 ### ###

cs.brown.edu

cs.brown.edu 128.148.32.110

xxx.brown.edu 128.148.32. ###
xxx.brown.edu 128.148.32 ###
xxx.brown.edu 128.148.32. ###
xxx.brown.edu 128.148.32. ###
xxx.brown ed:: 128.148.32 ###
xxx.brown.edu 128.148.32. ###
xxx.brown.edu 128.148.32 ###
xxx.brown.edu 128.148.32 ###

14

HTML

L
Hypertext markup o
language (HTML) <l ,
<title>Google</title>
— Allows linking to other </head>
<body>
Pages (hFEf) <p>Welcome to my page.</p>
i Supports embedding of <script>alert(“Hello world”);
\ . </script>
images, scripts, other <iframe src="http://example.com”>
i i </iframe
pages (script, iframe) i
— User input accepted in </html>

forms
2/14/23 Web Security | 15

HTTP (Hypertext Transport Protocol)

« Communication protocol between client and server

GET /search?q=cs166&num=02 HTTP/1.1
Host: www.google.com

—

Browser HTTP/1.1 200 OK
Server: Apache/2.2.3 (CentOS) ..

Content-Type: text/html
<html>
<head>
<title>Google</title>
</head>
<body>..</body>
</html>

2/14/23 Web Secuirity | 16

What’s in a request (or response)?

Variables (name-value pairs)

URL (domain, T\
G

path) ET /search?gq=cs166&num=02 HTTP/1.1
REQUEST Host: www.google.com

- RESPONSE

HTTP/1.1 200 OK
Server: Apache/2.2.3 (Cent0S) .. < Metadata
Content-Type: text/html
<hie Header
<head>
<title>Google</title> Resource
</head>

<body>..</body>
2/14/23 </html> Web Security | 17

Variables

* Key-value pairs obtained * POST request: variables
from user input into within HTTP body, e.g.,
forms and submitted to
server POST / HTTP/1.1

* Submit variables in HTTP Host: example.com
via GET or PUT Content-Type:

* GET request: variables 3%‘2'&%%0(33/ o
within HTTP URL, (S Content-Length: 18

http://www.google.com/
search?q=cs166&num=02 month=05&year=2021

2/14/23 Web Security | 18

Semantics: GET vs. POST

* GET « POST

—Request target resource
—Read-only method

target resource
—Submitted variables may —Read/write/create method
specify target resource

and/or its format — Submitted variables may
specify how resource is
processed (e.g., content of
resource to be created,
updated, or executed)

—Request processing of

2/14/23 Web Security | 19

GET vs. POST

GET POST
Browser history v X
Browser bookmarking v X
Browser caching v X
Server logs v X
Reloading page immediate warning
Variable values Restricted arbitrary

2/14/23 Web Security |

Moving from Browser Security to
Web Application Security:
Client-Side Controls

2/14/23 Web Security |

21

Client-Side Controls

*Web security problems arises because clients
can submit arbitrary input

*What about using client side
controls to check the input?

*Which kind of controls?

14/02/23 Web Security 22

Client-Side Controls

*A standard application may rely on client-side
controls to restrict user input in two general
ways:

*Transmitting data via the client component using a

mechanism that should prevent the user from
modifying that data

*Implementing measures on the client side

Bypassing Web Client-Side Controls

*In general a security flaw because it is easy to bypass

*The user:
— has a full control over the client and the data it submits

—Can bypass any controls that are client-side and not
replicated on the server

*Why these controls are still useful?
—E.g. for load balancing or usability

—Often we can suppose that the vast majority of users are
honest

14/02/23 Web Security 24

Transmitting Data Via the Client

A common developer bad habit is passing data to the clientin a
form that the end user cannot directly see or modify

* Why is it so common?

—It removes or reduces the amount of data to store server side per-
session

—In a multi-server application it removes the need to synchronize the
session data among different servers

—The use of third-party components on the server may be difficult or
impossible to integrate

* Transmitting data via the client is often the easy solution but
unfortunately is not secure.

14/02/23 Web Security 25

Common Mechanisms

*HTML Hidden fields

—A field flagged hidden is not displayed on-screen
*HTTP Cookies

—Not displayed on-screen, and the user cannot modify directly
*Referer Header

—An optional field in the http request that it indicates the URL of
the page from which the current request originated

*If you use the proper tool you can tamper the data on the
client-side

14/02/23 Web Security 26

Web client tool

*\Web inspection tool:

—Firefox or Chrome web developer:

¥ .powerful tools that allow you to edit HTML, CSS

and view the coding behind any website: CSS,
HTML, DOM and JavaScript

*Web Proxy:

— Burp, OWASP ZAP, etc.
*Allow to modify GET or POST requests

14/02/23 Web Security 27

HTTP Proxy

*An intercepting Proxy:

—inspect and modify traffic between your browser
and the target application

—Burp Intruder, OWASP ZAP, etc.

- N
i | &

Request [RRMPISIERES Foq.co [—

Browser Proxy Server

— -
4 3

™ WEBGOAT Demos

*Owasp Webgoat
https://tryhackme.com/room/webgoat

— parameter injection

—Bypass html field restrictions

—Exploit hidden fields

—Bypass client side java script validation

14/02/23 Web Security 29

l

@*@@@@

. Class IS startlng nowI
'\ ¥

Browser Security: Same-Origin Policy

* Goal: Protect and isolate web content from other
web content

— Content from different origins should be isolated,
e.g., mal.com should not interact with bank.com in
unexpected ways

— What about cs.brown.edu vs brown.edu or
mail.google.com vs drive.google.com?
— Lots of subtleties

2/14/23 Web Security | 31

SOP Example: [N

http://store.company.com/dir/page.html

URL Outcome Reason
http://store.company.com/dir2/other.html Same origin Only the path differs
http://store.company.com/dir/inner/another.html Same origin Only the path differs
https://store.company.com/page.html Failure Different protocol
http://store.company.com:81/dir/page.html Failure Different port (http:// is port 80 by default)
http://news.company.com/dir/page.html Failure Different host

Source: https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

Back to Browser Security: SOP

®* Verysimple idea: “Content from different origins should be

isolated”
— Website origin defined over tuple (protocol, domain, port)

®* Very difficult to execute in practice...

— Messy number of cases to worry about...
® HTMLelements?

Navigating Links?

Browser cookies?

JavaScript capabilities?

iframes?

etc.

— Browsers didn’t always get this correct...

2/14/23 Web Security |

Cookies

« HTTP is a stateless protocol; cookies used to emulate state

* Servers can store cookies (name-value pairs) into browser
* Used for user preferences, user tracking, authentication
* Expiration date can be set

* May contain sensitive information (e.g., for user authentication)
* Browser sends back cookies to server on the next connection

POST /login.php HTTP/1.1

Set-Cookie: Name: sessionid
Value: 19daj3kdop8gx
Domain: cs.brown.edu
Expires: Wed, 21 Oct 2021 ..

2/14/23 Web Security | 35

Cookie Scope

* Each cookie has a scope
— Base domain, which is a given host (e.g., brown.edu)
— Plus, optionally, all its subdomains (cs.brown.edu,
math.brown.edu, www.cs.brown.edu, etc.)

 For ease of notation, we denote with + the

inclusion of subdomains (e.g., +brown.edu)

— This isn’t the real notation—it’s actually specified in HTTP
with the "Domain:" attribute of a cookie

2/14/23 Web Security | 36

Same Origin Policy: Cookie Reads

Websites can only read cookies within their scope

2/14/23

Example: browser has
cookies with scope
brown.edu
+brown.edu,
+math.brown.edu
cs.brown.edu
+cs.brown.edu,
help.cs.brown.edu

Web Security |

Browser accesses
cs.brown.edu

Browser sends cookies with
scope

+brown.edu

cs.brown.edu
+cs.brown.edu

37

Same Origin Policy: Cookie Writes

A website can set cookies for (1) its base domain; or
(2) a super domain (except TLDs) and its subdomains

 Browser accesses e But not for
cs.brown.edu google.com

* cs.brown.edu can set +com
cookies for math.brown.edu
+brown.edu brown.edu

cs.brown.edu

2/14/23 Web Security | 38

Application of Cookies: Sessions

* Sessions * Sessions
— Keep track of client over a — Necessary in sites with
series of requests authentication (e.g., banking)
— Server assigns Clients a — Useful in most other sites
unique, unguessable 1D (e.g., remembering
— Clients send back ID to verify Preferences)
themselves e Various methods to

2/14/23

implement them (mainly
cookies), but also could be
in HTTP variables

Web Security | 39

Third-Party Cookies

Cookies are set and returnedin ¢ Example
each HTTP request and response — Site brown.edu embeds
Accessing a site can result in HTTP YouTube videos

: : — Accessing
requests to various domains e —
— E.g., embedded images can be loaded cookies set by

from other domains

Third-party cookie B e can be
— Set by server with domain configured not to store

different from that of original third-party cookies
request (e.g., ad network) (recommended)

2/14/23 Web Security | 40

Clicker Question #1

If the browser accesses cs.brown.edu, the server can set
cookies with which of the following scopes?

A. +brown.edu
only math.brown.edu

only help.cs.brown.edu
. All of the above

None of the above

m o O w

2/14/23 Web Security |

Answer

If the browser accesses cs.brown.edu, the server can set
cookies with which of the following scopes?

A. +brown.edu
B. only math.brown.edu
C. only help.cs.brown.edu

The scope is cs.brown.edu by default

The server can optionally set cookies with scope
+cs.brown.edu and +brown.edu, but nothing else

2/14/23 Web Security |

42

What We Have Learned

* Web Security Models

*Same-Origin Policy

*Basics of HTTP protocol

* GET and POST methods for HTTP variables
*Client-Side Controls

*Scope of cookies

*Session cookies

*Third-party cookies

* JavaScript
2/14/23 Web Security |

43

