
5 4 3 2 1

Countdown

0123456789101112131415161718192021222324252627282930

Class is starting now!

.5

Cryptography III
Digital Signatures, MACs,

IND-CPA
CS 166: Introduction to Computer

Systems Security

2/7/23 Cryptography III 2

Public Key Cryptography (recap)
Key pair
• Public key: shared with

everyone
• Secret key: kept secret, hard to

derive from the public key

2/7/23 Cryptography III 3

encrypt decrypt

ciphertext

plaintextplaintext

public key secret key

Sender RecipientAttacker

Protocol
• Sender encrypts using

recipient's public key
• Recipient decrypts using its

secret key

Public-Key Encryption in Formulas (recap)

2/7/23 Cryptography III 4

• Notation
–PK: public key of recipient
–SK: secret key of recipient
–M: plaintext
–C: ciphertext

• Encryption
–C = EPK (M)
–The sender encrypts the

plaintext with the public
key of the recipient

• Decryption
–M = DSK (C)
–The recipient decrypts the ciphertext with

their private key
• Properties
– Anyone can encrypt a message since the

recipient openly shares the public key
–Only the recipient can decrypt the message

since the private key is kept secret
– It should be unfeasible to derive the secret

key from the public key

Digital Signatures

2/7/23 Cryptography III 5

Signatures: from Ink to Digital

2/7/23 Cryptography III 6

• Signature in the real
world
–Contracts
–Checks
–Job offers
–Affidavits

• Digital signatures are a
matter of both computer
security and law
• ESIGN Act (2000 US)
• eIDAS Regulation (2014 EU)
• Technological failures can

have legal consequences

What is a Digital Signature?

2/7/23 7Cryptography III

signature
algorithm

Alice BobSignature
key

message

signature

Alice

Verification
key

verification
algorithm

yes

no

Alice

signed message
• Alice wants to send a message and prove that it comes from her

Goals for a Digital Signature

2/7/23 Cryptography III 8

• Authenticity
–Binds an identity (signer)

to a message
–Provides assurance of

the signer
• Unforgeability
–An attacker cannot forge

a signature for a
different identity

• Nonrepudiation
–Signer cannot deny having

signed the message
• Integrity
–An attacker cannot take a

signature by Alice for a
message and create a
signature by Alice for a
different message

Digital Signatures in practice

• Use symmetric key encryption…
– Requires previous secure communication

– Only works with single recipient

• Can we use public key encryption?

2/7/23 Cryptography III 9

Digital Signature with Public-Key
Encryption

2/7/23 10Cryptography III

“decryption”
algorithm

Alice BobAlice’s secret
key SK

message M

signature
S = DSK (M)

Alice

Alice’s
public key

PK

“encryption”
algorithm

signed message (M, S)

yes

no
=

EPK (S)

MM

Digital Signature with
Public-Key Encryption

2/7/23 Cryptography III 11

• In a public-key cryptosystem (e.g., RSA),
we can often reverse the order of
encryption and decryption

EPK (DSK (M)) = M
• Alice “decrypts” plaintext message M

with the secret key and obtains a digital
signature on M

sign(M, SK) {
return S = DSK (M) }

• Knowing Alice’s public key,
PK, can verify the validity
of signature S on M
• Bob “encrypts” signature S

with PK, and
• Checks if it the result is

message M
verify(M, S, PK) {

return (M == EPK (S)
) }

Signing Hashes

2/7/23 Cryptography III 12

• Basic method for public-
key digital signatures
–Signature as long as the

message
–Slow public-key

encryption/decryption
• Preferred method
–Sign a cryptographic hash

of the message
–Hash is short and fast to

compute

• Sign
S = DSK (h(M))

• Verify
h(M) == EPK (S)

• Security of signing hash
–Security of digital

signature
–Collision resistance of

hash function

Clicker Question (1)
Alice wants to increase the efficiency of her public-key digital
signature system by signing a cryptographic hash of each message
instead of the message itself. Given the decryption function D, secret
key SK, and message M, how can we represent Alice's digital
signature S on the hash of the message?

2/7/23 13Cryptography III

A. S = DSK(M)
B. S = DSK(h(M))

C. S = (h(M), DSK(M))
D. S = h(DSK(M))

Clicker Question (1) - Answer
Alice wants to increase the efficiency of her public-key digital
signature system by signing a cryptographic hash of each message
instead of the message itself. Given the decryption function D, secret
key SK, and message M, how can we represent Alice's digital
signature S on the hash of the message?

2/7/23 14Cryptography III

A. S = DSK(M)
B. S = DSK(h(M))

C. S = (h(M), DSK(M))
D. S = h(DSK(M))

Clicker Question (2)
Bob wants to send Alice an encrypted message. He found Alice’s
profile online, and it lists her public key, PK. How can Bob verify that
this is really Alice's public key?

A. Check whether EPK (DPK (M)) = M
B. Use PK to encrypt message M = “If you can decrypt this message, reply with

password MySecretPassword” and send it to the profile. Check whether you get
the correct password back.

C. Send a request to the profile asking for a message digitally signed with the
secret key corresponding to PK. Check whether the signature is valid.

D. None of the above

2/7/23 15Cryptography III

Clicker Question (2) - Answer
Bob wants to send Alice an encrypted message. He found Alice’s
profile online, and it lists her public key. How can Bob verify that this is
really Alice's public key?

ANSWER: D. None of the above.

Bob cannot use method A since he does not have the private key. Also, it's
unclear what message M would be in this method.

Methods B and C assure Bob that he is interacting with a party who has
possession of the private key corresponding to the posted public key.
However, they do not prove this party is Alice.

2/7/23 16Cryptography III

Send a message securely

2/7/23 Cryptography III 17

• Alice wants to send a message
that only Bob can read and that
only she can have sent.
• Requirements
– Confidentiality of all communication
– Bob understands he is

communicating with Alice
• Message M needs to be encrypted

and digitally signed

• Active adversary, Eve
–Can eavesdrop and

modify messages
• Eve knows:
–PKAlice
–PKBob

Alice

Alice Bob

Encrypt then Sign

2/7/23 Cryptography III 18

• Encrypt then sign
–Alice encrypts

C = E((M, PKBob))
–Alice signs CS=(C, SKAlice)
–Alice sends CS to Bob
–Bob verifies C=(Cs, PKAlice)

and decrypts C to (Cs,
SKBob)

• Attack
–Eve replace S with her signature S'

on CS’ and forwards (C, S') to Bob
–Bob now thinks he is

communicating with Eve
–Eve can then forward Bob’s

response (intended for Eve) to Alice
This is a subtle risk but it
could be dangerous
– during a transaction
– Authentication protocol
– …

Alice X Eve
Alice Bob

Sign then Encrypt

2/7/23 Cryptography III 19

• Sign then encrypt
–Alice signs MS=(M,

SKAlice)
–Alice encrypts

C = E((MS, PKBob))
–Alice sends C to Bob
–Bob decrypts C to (Ms,

SKBob) and verifies
M=(Ms, PKAlice)

• Attack
–Eve does not know SKBob
• She can not read M

–Eve does not know
SKAlice
• She can not tamper M

This is the correct order

Alice

Alice Bob

Eve X

Relying on Public Keys

2/7/23 Cryptography III 20

• The verifier of a signature
must be assured that the
public key corresponds to
the correct party
• The signer should not be

able to deny the association
with the public key
• Public keys usually are

stored in browsers or in OS

• A trusted party could
keep and publish pairs
(identity, public key)
–Government?
–Private organizations?

• What if the private
key is compromised?
–Need for key revocation

mechanism

Message Authentication Code

2/7/23 21Cryptography III

MAC
• Similar to Digital Signature, but symmetric
– Therefore does not provide nonrepudiation

• Provides a guarantee that a message came
from a certain sender and has not been
changed

2/7/23 Cryptography III 22

MAC Properties
• Unforgeability
– Even after seeing many MAC-message pairs, an

attacker cannot produce a valid MAC for a new
message

• Integrity
– If the MAC or the message is altered, the recipient

can detect it
2/7/23 Cryptography III 23

Implementing MACs
Block Ciphers
• CBC-MAC

– Using a block cipher in CBC
mode, encrypt a message and
use the last cipher block as a
MAC

– Requires some tweaks! You
must fix the IV and you must
prepend each message with
its length

Cryptographic Hash Functions

• HMAC
– Use hash function and a

shared secret
– Theoretical construction:

• H(M||K)
– In practice:

• Length extension attacks
require padding schemes

• RFC 2104
242/7/23 Cryptography III

https://tools.ietf.org/html/rfc2104.html

MAC then Encrypt (MtE)
• E(Message || MAC(Message))
• Was used by TLS (although with

special padding schemes)
• Does not provide integrity of

ciphertext, only plaintext
• Not proven to be secure in

general case (some exceptions
like TLS)

https://upload.wikimedia.org/wikipedia/commons/a/ac/Authenticated_Encryption_MtE.png
2/7/23 Cryptography III 25

MAC and Encrypt (M&E)
• (E(Message), MAC(Message))
• Can leak message equality even

if E() does not
– Unless you use the Key in

counter mode
• Does not provide integrity of

ciphertext, only plaintext
• Not proven to be secure (but

again, some variants are in SSH)
https://upload.wikimedia.org/wikipedia/commons/a/a5/Authenticated_Encryption_EaM.png

2/7/23 26

Encrypt then MAC (EtM)
• (E(Message), MAC(E(Message)))
• Integrity guarantee on both

ciphertext and plaintext
• Generally recommended order of

operations
• Proposed to replace MtE in TLS

(RFC 7366) and used in IPSEC
• You should use EtM! (We will see

more in last project…)
https://upload.wikimedia.org/wikipedia/commons/b/b9/Authenticated_Encryption_EtM.png

2/7/23 27

https://tools.ietf.org/html/rfc7366

0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Break!!!!!

0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

Class is starting now!

Formalizing Encryption Security

2/7/23 29Cryptography III

• Alice and Bob are sending encrypted
messages to each other
– Adversary Eve can eavesdrop on those messages
– …and maybe do other things as well

• Security goal: protect confidentiality w.r.t. Eve
– Useful to formalize: What are Eve’s capabilities as

an adversary?

Adversary Models

2/7/23 Cryptography III 30

Eve

1. Ciphertext-only
– Eve sees all ciphertexts, but has no / vague information about the

underlying plaintext

2. Known plaintext
– Eve also knows part of / format of plaintext messages
– How could this happen?

• All of your internet requests start with the same header
• Sending a order CSV in the same format every week
• You text “hi” to people when you first start texting them

– Open design principle

(Weaker) Adversary Models

2/7/23 Cryptography III 31

3. Chosen plaintext
– Eve is able to encrypt plaintexts of Eve’s choosing and see the resulting

ciphertexts
– How can this happen?

• Eve sends Alice email spoofed from Alice’s boss saying “Please securely forward this to Bob”
• Public key cryptography
• Your dorm room at the CREWMATE ACADEMY has a router that you can send plaintexts to…

4. Chosen ciphertext
– Eve chooses ciphertexts and Alice reveals some info about the decryption
– Mostly not covered too much in course…unless you’re a CS1620/CS2660

student J

(Stronger) Adversary Models

2/7/23 Cryptography III 32

• How do we show that our schemes are
secure against these different kinds of
attacker models?

• Intuitive definition: “No adversary can
reconstruct plaintext M from ciphertext C”
– This isn’t sufficient—what if adversary can

tell first letter of M, but nothing else?
• Satisfies the definition, but still a broken

scheme
• Adversary could still reconstruct other parts

of M based on what they know about its
format

– Need something stronger than this

Formalization

2/7/23 Cryptography III 33

• Goal: Cryptosystem should not
leak any information about M
– Idea: No adversary should be

able to distinguish between two
messages based on their
encryption

• We model ”security” of
encryption schemes as a game

– Played between a challenger (with
access to the encryption algorithm
and the secret key) and an adversary

• ”Indistinguishability under
Chosen Plaintext Attack”

• Adversary has polynomially-
bounded access to an
encryption oracle

– If an adversary has access to this
kind of oracle, we say they are an
“IND-CPA adversary”)

IND-CPA

2/7/23 Cryptography III 34

Challenger Adversary

𝑚!, 𝑚" (of equal length) with 𝑚! ≠ 𝑚"

Randomly pick 𝑚# ∈ {𝑚!, 𝑚"}

𝑐′ = 𝐸𝑛𝑐$(𝑚#) 𝑐′

Output guess if 𝑖 = 1 or 𝑖 = 2

If adversary guessed correct 𝑖, then
adversary wins.

If adversary’s probability of winning
the game is equal to ½, then our

scheme is “IND-CPA secure” (why ½?)

𝑚

𝑐 = 𝐸𝑛𝑐$(𝑚) 𝑐
Query
Phase

Challenge
Phase

Repeat as many
times as desired
polynomially

Generate a key 𝑘 = KeyGen()Setup
Phase

Clicker Questions
3) Is the Caesar
cipher cryptosystem
IND-CPA secure?

A. Yes
B. No

2/7/23 35Cryptography III

4) Is the one-time-
pad cryptosystem
IND-CPA secure?

A. Yes
B. No

5) Is the encryption
function

𝐸𝑛𝑐! 𝑚 = 1

IND-CPA secure?

A. Yes
B. No

Clicker Question (3)
ANSWER: B (No)
What’s the adversary’s strategy in the IND-CPA game against Caesar?

• Setup phase: Not necessary
• Challenge phase: Send plaintexts “AB” and “AA”
– If output is in the form “XY” (where X =! Y), then output “AB”
– Otherwise, output must be in form “XX”; then output “AA”

2/7/23 36Cryptography III

Three Clicker Questions

2/7/23 37Cryptography III

4) Is the one-time-
pad cryptosystem
IND-CPA secure?

A. Yes
B. No

5) Is the encryption
function

𝐸𝑛𝑐! 𝑚 = 1

IND-CPA secure?

A. Yes
B. No

Clicker Question (4)
ANSWER: B (No)
What’s the adversary’s strategy in the IND-CPA game against OTP?

• Setup phase: Send messages 𝑚!, 𝑚" to get 𝑐!, 𝑐"
• Challenge phase: Send plaintexts 𝑚!, 𝑚"; challenger returns 𝑐#
– If 𝑐! ⊕ 𝑐" = 0, then output 𝑐"
– Otherwise, it must be that 𝑐! ⊕ 𝑐# = 0, so output 𝑐#
– Why does this work?

2/7/23 38Cryptography III

Three Clicker Questions

2/7/23 39Cryptography III

5) Is the encryption
function

𝐸𝑛𝑐! 𝑚 = 1

IND-CPA secure?

A. Yes
B. No

Clicker Question (5)
ANSWER: A (Yes)
But it’s not “correct”…

We also care about correctness—i.e. that we can actually decrypt a
given encryption.

2/7/23 40Cryptography III

Summary
• Digital signature
– Authenticity, Unforgeability, Nonrepudiation, Integrity

• Message Authentication Codes
– CBC-MAC and HMAC

• Formalizing Encryption Security
– IND-CPA model

2/7/23 Cryptography III 41

CRYPTO IN PRACTICE

2/7/23 Cryptography III 42

Washington-Moscow
Hotline

One-Time Tape (OTT)
• Teleprinter version of OTP (Vernam Cipher)

2/7/23 43

Encryption Decryption

Mixing

Electronic
Teleprinter
Cryptographic
Regenerative
Repeater Mixer
(ETCRRM)

source: https://www.cryptomuseum.com/crypto/hotline/index.htmCryptography III

Cybersecurity mindset
• The first message from USA to Moscow 8/30/1963
– Which characteristics…

– a line that contains all letters of the alphabet (a pangram) and numbers,
so they tested that every possible characters worked

2/7/23 Cryptography III 44

THE QUICK BROWN FOX
JUMPED OVER THE LAZY
DOG'S BACK 1234567890

