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Cryptography III
Digital Signatures, MACs, 

IND-CPA
CS 166: Introduction to Computer 

Systems Security
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Public Key Cryptography (recap)
Key pair
• Public key: shared with 

everyone
• Secret key: kept secret, hard to 

derive from the public key
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encrypt decrypt

ciphertext

plaintextplaintext

public key secret key

Sender RecipientAttacker

Protocol
• Sender encrypts using 

recipient's public key
• Recipient decrypts using  its 

secret key



Public-Key Encryption in Formulas (recap)
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• Notation
–PK: public key of recipient
–SK: secret key of recipient
–M: plaintext
–C: ciphertext

• Encryption
–C = EPK (M)
–The sender encrypts the 

plaintext with the public 
key of the recipient

• Decryption
–M = DSK (C)
–The recipient decrypts the ciphertext with 

their private key
• Properties
– Anyone can encrypt a message since the 

recipient openly shares the public key
–Only the recipient can decrypt the message 

since the private key is kept secret
– It should be unfeasible to derive the secret 

key  from the public key



Digital Signatures
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Signatures: from Ink to Digital
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• Signature in the real 
world
–Contracts
–Checks
–Job offers
–Affidavits

• Digital signatures are a 
matter of both computer 
security and law 
• ESIGN Act (2000 US)
• eIDAS Regulation (2014 EU)
• Technological failures can 

have legal consequences



What is a Digital Signature?
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signature 
algorithm

Alice BobSignature 
key

message

signature

Alice

Verification 
key

verification 
algorithm

yes

no

Alice

signed message
• Alice wants to send a message and prove that it comes from her



Goals for a Digital Signature
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• Authenticity
–Binds an identity (signer) 

to a message
–Provides assurance of 

the signer
• Unforgeability
–An attacker cannot forge 

a signature for a 
different identity

• Nonrepudiation
–Signer cannot deny having 

signed the message
• Integrity
–An attacker cannot take a 

signature by Alice for a 
message and create a 
signature by Alice for a 
different message



Digital Signatures in practice

• Use symmetric key encryption…
– Requires previous secure communication

– Only works with single recipient

• Can we use public key encryption?
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Digital Signature with Public-Key 
Encryption
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“decryption” 
algorithm

Alice BobAlice’s secret 
key SK

message M

signature 
S = DSK (M)
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“encryption” 
algorithm

signed message (M, S)
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Digital Signature with 
Public-Key Encryption
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• In a public-key cryptosystem (e.g., RSA), 
we can often reverse the order of 
encryption and decryption

EPK (DSK (M)) = M
• Alice “decrypts” plaintext message M 

with the secret key and obtains a digital 
signature on M

sign(M, SK) {
return S = DSK (M) }

• Knowing Alice’s public key, 
PK, can verify the validity 
of signature S on M
• Bob “encrypts” signature S 

with PK, and
• Checks if it the result is 

message M
verify(M, S, PK) {

return (M == EPK (S) 
) }



Signing Hashes
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• Basic method for public-
key digital signatures
–Signature as long as the 

message
–Slow public-key 

encryption/decryption
• Preferred method
–Sign a cryptographic hash 

of the message
–Hash is short and fast to 

compute

• Sign
S = DSK (h(M))

• Verify
h(M) == EPK (S)

• Security of signing hash
–Security of digital 

signature
–Collision resistance of 

hash function



Clicker Question (1)
Alice wants to increase the efficiency of her public-key digital 
signature system by signing a cryptographic hash of each message 
instead of the message itself. Given the decryption function D, secret 
key SK, and message M, how can we represent Alice's digital 
signature S on the hash of the message?
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A. S = DSK(M)
B. S = DSK(h(M))

C. S = (h(M), DSK(M))
D. S = h(DSK(M))



Clicker Question (1) - Answer
Alice wants to increase the efficiency of her public-key digital 
signature system by signing a cryptographic hash of each message 
instead of the message itself. Given the decryption function D, secret 
key SK, and message M, how can we represent Alice's digital 
signature S on the hash of the message?
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A. S = DSK(M)
B. S = DSK(h(M))

C. S = (h(M), DSK(M))
D. S = h(DSK(M))



Clicker Question (2)
Bob wants to send Alice an encrypted message. He found Alice’s 
profile online, and it lists her public key, PK. How can Bob verify that 
this is really Alice's public key?

A. Check whether EPK (DPK (M)) = M
B. Use PK to encrypt message M = “If you can decrypt this message, reply with 

password MySecretPassword” and send it to the profile. Check whether you get 
the correct password back.

C. Send a request to the profile asking for a message digitally signed with the 
secret key corresponding to PK. Check whether the signature is valid.

D. None of the above
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Clicker Question (2) - Answer
Bob wants to send Alice an encrypted message. He found Alice’s 
profile online, and it lists her public key. How can Bob verify that this is 
really Alice's public key?

ANSWER: D. None of the above.

Bob cannot use method A since he does not have the private key. Also, it's 
unclear what message M would be in this method.

Methods B and C assure Bob that he is interacting with a party who has 
possession of the private key corresponding to the posted public key. 
However, they do not prove this party is Alice.
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Send a message securely
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• Alice wants to send a message 
that only Bob can read and that 
only she can have sent.
• Requirements
– Confidentiality of all communication
– Bob understands he is 

communicating with Alice
• Message M needs to be encrypted

and digitally signed

• Active adversary, Eve
–Can eavesdrop and 

modify messages
• Eve knows:
–PKAlice
–PKBob

Alice

Alice Bob



Encrypt then Sign
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• Encrypt then sign
–Alice encrypts 

C = E((M, PKBob))
–Alice  signs CS=(C, SKAlice)
–Alice sends CS to Bob
–Bob verifies C=(Cs, PKAlice) 

and decrypts C to (Cs, 
SKBob) 

• Attack
–Eve replace S with her signature S' 

on CS’ and forwards (C, S') to Bob
–Bob now thinks he is 

communicating with Eve
–Eve can then forward Bob’s 

response (intended for Eve) to Alice
This is a subtle risk but it 
could be  dangerous 
– during a transaction
– Authentication protocol
– …

Alice X Eve
Alice Bob



Sign then Encrypt
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• Sign then encrypt
–Alice  signs MS=(M, 

SKAlice)
–Alice encrypts 

C = E((MS, PKBob))
–Alice sends C to Bob
–Bob decrypts C to (Ms, 

SKBob) and verifies 
M=(Ms, PKAlice)

• Attack
–Eve does not know SKBob
• She can not read M

–Eve does not know 
SKAlice
• She can not tamper M

This is the correct order

Alice

Alice Bob

Eve X



Relying on Public Keys
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• The verifier of a signature 
must be assured that the 
public key corresponds to 
the correct party
• The signer should not be 

able to deny the association 
with the public key
• Public keys usually are 

stored in browsers or in OS

• A trusted party could 
keep and publish pairs 
(identity, public key)
–Government?
–Private organizations?

• What if the private 
key is compromised?
–Need for key revocation 

mechanism



Message Authentication Code
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MAC
• Similar to Digital Signature, but symmetric 
– Therefore does not provide nonrepudiation

• Provides a guarantee that a message came 
from a certain sender and has not been 
changed

2/7/23 Cryptography III 22



MAC Properties 
• Unforgeability
– Even after seeing many MAC-message pairs, an 

attacker cannot produce a valid MAC for a new 
message

• Integrity
– If the MAC or the message is altered, the recipient 

can detect it
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Implementing MACs
Block Ciphers
• CBC-MAC

– Using a block cipher in CBC 
mode, encrypt a message and 
use the last cipher block as a 
MAC

– Requires some tweaks! You 
must fix the IV and you must 
prepend each message with 
its length 

Cryptographic Hash Functions

• HMAC
– Use hash function and a 

shared secret
– Theoretical construction:

• H(M||K)
– In practice: 

• Length extension attacks 
require padding schemes

• RFC 2104
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https://tools.ietf.org/html/rfc2104.html


MAC then Encrypt (MtE)
• E(Message || MAC(Message))
• Was used by TLS (although with 

special padding schemes)
• Does not provide integrity of 

ciphertext, only plaintext
• Not proven to be secure in 

general case (some exceptions 
like TLS)

https://upload.wikimedia.org/wikipedia/commons/a/ac/Authenticated_Encryption_MtE.png
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MAC and Encrypt (M&E)
• (E(Message), MAC(Message))
• Can leak message equality even 

if E() does not
– Unless you use the Key in 

counter mode
• Does not provide integrity of 

ciphertext, only plaintext 
• Not proven to be secure (but 

again, some variants are in SSH) 
https://upload.wikimedia.org/wikipedia/commons/a/a5/Authenticated_Encryption_EaM.png
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Encrypt then MAC (EtM)
• (E(Message), MAC(E(Message)))
• Integrity guarantee on both

ciphertext and plaintext
• Generally recommended order of 

operations
• Proposed to replace MtE in TLS 

(RFC 7366) and used in IPSEC
• You should use EtM! (We will see 

more in last project…)
https://upload.wikimedia.org/wikipedia/commons/b/b9/Authenticated_Encryption_EtM.png
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https://tools.ietf.org/html/rfc7366
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Class is starting now!



Formalizing Encryption Security
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• Alice and Bob are sending encrypted 
messages to each other
– Adversary Eve can eavesdrop on those messages
– …and maybe do other things as well

• Security goal: protect confidentiality w.r.t. Eve
– Useful to formalize: What are Eve’s capabilities as 

an adversary?

Adversary Models
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Eve



1. Ciphertext-only
– Eve sees all ciphertexts, but has no / vague information about the 

underlying plaintext

2. Known plaintext
– Eve also knows part of / format of plaintext messages
– How could this happen?

• All of your internet requests start with the same header
• Sending a order CSV in the same format every week
• You text “hi” to people when you first start texting them

– Open design principle

(Weaker) Adversary Models
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3. Chosen plaintext
– Eve is able to encrypt plaintexts of Eve’s choosing and see the resulting 

ciphertexts
– How can this happen?

• Eve sends Alice email spoofed from Alice’s boss saying “Please securely forward this to Bob”
• Public key cryptography
• Your dorm room at the CREWMATE ACADEMY has a router that you can send plaintexts to…

4. Chosen ciphertext
– Eve chooses ciphertexts and Alice reveals some info  about the decryption
– Mostly not covered too much in course…unless you’re a CS1620/CS2660 

student J

(Stronger) Adversary Models
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• How do we show that our schemes are 
secure against these different kinds of 
attacker models?

• Intuitive definition: “No adversary can 
reconstruct plaintext M from ciphertext C”
– This isn’t sufficient—what if adversary can 

tell first letter of M, but nothing else?
• Satisfies the definition, but still a broken 

scheme
• Adversary could still reconstruct other parts 

of M based on what they know about its 
format

– Need something stronger than this

Formalization
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• Goal: Cryptosystem should not 
leak any information about M
– Idea: No adversary should be 

able to distinguish between two 
messages based on their 
encryption

• We model ”security” of 
encryption schemes as a game

– Played between a challenger (with 
access to the encryption algorithm 
and the secret key) and an adversary



• ”Indistinguishability under 
Chosen Plaintext Attack”

• Adversary has polynomially-
bounded access to an 
encryption oracle 

– If an adversary has access to this 
kind of oracle, we say they are an 
“IND-CPA adversary”)

IND-CPA
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Challenger Adversary

𝑚!, 𝑚" (of equal length) with 𝑚! ≠ 𝑚"

Randomly pick 𝑚# ∈ {𝑚!, 𝑚"}

𝑐′ = 𝐸𝑛𝑐$(𝑚#) 𝑐′

Output guess if 𝑖 = 1 or 𝑖 = 2

If adversary guessed correct 𝑖, then 
adversary wins.

If adversary’s probability of winning 
the game is equal to ½, then our 

scheme is “IND-CPA secure” (why ½?)

𝑚

𝑐 = 𝐸𝑛𝑐$(𝑚) 𝑐
Query 
Phase

Challenge 
Phase

Repeat as many 
times as desired
polynomially

Generate a key 𝑘 = KeyGen()Setup 
Phase



Clicker Questions
3) Is the Caesar 
cipher cryptosystem 
IND-CPA secure?

A. Yes
B. No
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4) Is the one-time-
pad cryptosystem 
IND-CPA secure?

A. Yes
B. No

5) Is the encryption 
function

𝐸𝑛𝑐! 𝑚 = 1

IND-CPA secure?

A. Yes
B. No



Clicker Question (3)
ANSWER: B (No)
What’s the adversary’s strategy in the IND-CPA game against Caesar?

• Setup phase: Not necessary
• Challenge phase: Send plaintexts “AB” and “AA”
– If output is in the form “XY” (where X =! Y), then output “AB”
– Otherwise, output must be in form “XX”; then output “AA”
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Three Clicker Questions
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4) Is the one-time-
pad cryptosystem 
IND-CPA secure?

A. Yes
B. No

5) Is the encryption 
function

𝐸𝑛𝑐! 𝑚 = 1

IND-CPA secure?

A. Yes
B. No



Clicker Question (4)
ANSWER: B (No)
What’s the adversary’s strategy in the IND-CPA game against OTP?

• Setup phase: Send messages 𝑚!, 𝑚" to get 𝑐!, 𝑐"
• Challenge phase: Send plaintexts 𝑚!, 𝑚"; challenger returns 𝑐#
– If 𝑐! ⊕ 𝑐" = 0, then output 𝑐"
– Otherwise, it must be that 𝑐! ⊕ 𝑐# = 0, so output 𝑐#
– Why does this work?
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Three Clicker Questions
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5) Is the encryption 
function

𝐸𝑛𝑐! 𝑚 = 1

IND-CPA secure?

A. Yes
B. No



Clicker Question (5)
ANSWER: A (Yes)
But it’s not “correct”…

We also care about correctness—i.e. that we can actually decrypt a 
given encryption.
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Summary
• Digital signature
– Authenticity, Unforgeability, Nonrepudiation, Integrity

• Message Authentication Codes
– CBC-MAC and HMAC

• Formalizing Encryption Security
– IND-CPA model
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CRYPTO IN PRACTICE
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Washington-Moscow 
Hotline

One-Time Tape (OTT)
• Teleprinter version of OTP (Vernam Cipher)
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Encryption Decryption

Mixing

Electronic 
Teleprinter 
Cryptographic 
Regenerative 
Repeater Mixer 
(ETCRRM)

source: https://www.cryptomuseum.com/crypto/hotline/index.htmCryptography III



Cybersecurity mindset
• The first message from USA to Moscow 8/30/1963
– Which characteristics…

– a line that contains all letters of the alphabet ( a pangram) and numbers, 
so they tested that every possible characters worked
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THE QUICK BROWN FOX 
JUMPED OVER THE LAZY 
DOG'S BACK 1234567890


