
CS1660/CS2660 Computer Systems Security Spring 2023

Project: Handin
Due: Friday, Mar 24 @ 11:59 pm ET

1 Assignment 2
1.1 Required work 3
1.2 Vulnerability Reports 3
1.3 Setup guide: Accessing the Infras-

tructure 3
1.4 Starter repository 4

2 Other resources 4
2.1 cs666 whoami 4
2.2 Resetting the Course Infrastructure . 4
2.3 Tools and man Pages 4

3 Deliverables 5
3.1 Video Demo 5
3.2 Handing In 5

I Appendix 6

A The ACADEMY’s Ivy Handout 6

B Vulnerability Categories 8

C Some Hints For Getting Started 8

0 Introduction

After the FLAG portal fiasco, Blue University decided that a safer way for students to submit assignments
was via a handin script, one very similar to the system sometimes used in CS courses at Brown. Each course
has a directory in a shared filesystem, and running csXXX handin (where csXXX is a course number)
invokes a setgid binary that saves all files in the current working directory in a .tar archive in the
course’s handin directory. Additionally, every course has an autograder which can extract a student’s
handin and automatically grade it by running test suites against their code. These grades are automatically
collected in a course-wide grades database.

As a new student, you’re currently enrolled in cs666: “Secure Computer Systems”. Presently, they’ve
released one assignment, “Ivy”, a similar problem to the one from the Cryptography project from the start
of the class. Appendix A contains the handout for their version of “Ivy”. One thing you know after talking
to your friends at Brown University is that solving “Ivy” wasn’t easy—and this version is a little different.
Instead of trying to figure out Ivy again, maybe you’ll have more luck with simply breaking the cs666
autograder infrastructure instead. . .

0.1 Learning goals

In this project, you will have an opportunity to exercise your operating systems knowledge to discovering
how the autograding frameworks out and figuring out how to break it. You will play the role of a tester (a
student who doesn’t want to do the assignment, a TA preparing for next semester, etc.) who is investigating
the assignment for vulnerabilities. As in the previous project, you will write up a brief report about what
you found, how you were able to exploit it, and comment on how the vulnerability could be fixed.

Critically, in this project you have access to the course code for the system you are attacking. This is to help you
gain experience with a different form of testing systems—instead of discovering how the system works just
from testing, you can analyze the code to understand how it works and how it is vulnerable. Note that you
are still not required to develop fixes for the vulnerabilities you find: like the previous project, you should
consider your report as something that could presented to the system’s developers so they can address the
issues.

1

CS1660/CS2660 Computer Systems Security Spring 2023

0.2 Requirements

There is no extra CS1620/CS2660 component for this assignment, but CS1620/CS2660 students are required
to find some additional vulnerabilities in the autograding framework. For details, see Sec 1.1.

1 Assignment

You will break cs666’s course infrastructure by creating exploits that take advantage of distinct vulnerabilities.
Exploits must allow you to perform a normally unauthorized action in the system or discover information
that unprivileged users should not have access to. For example, viewing other students’ grades, accessing
other students’ submissions, or running arbitrary code with TA group permissions would all count as
exploits.

Wiki We’ve provided a wiki describing each type of vulnerability and some details on how it works—
we highly recommend using the if you want more help and resources for learning about these different
vulnerability categories. This is a great starting point for this project, as it will give you an idea of what
attacks you can carry out.
You can view the wiki here: http://cs.brown.edu/courses/csci1660/handin-wiki/

Counting vulnerabilities An exploit’s “distinct-ness” is defined as a tuple ((file, category)), where
file is a file in the source code from the cs666 course infrastructure and category is one or more vulner-
ability categories. That is, two exploits take advantage of distinct vulnerabilities if they:

1. Take advantage of vulnerabilities in different files, OR

2. Take advantage of vulnerabilities in the same file, but rely on non-overlapping sets of vulnerability
categories

Appendix B contains a list of possible vulnerability categories that count as exploits on this project. You
should refer to this list to determine if vulnerabilities map to the same category.

Source code cs666 loves open source, so you have access to all of the source code for cs666’s course in-
frastructure, which is located here: https://github.com/brown-csci1660/handin-source

You can refer to the files in this directory to understand how the infrastructure works, as well as to deter-
mine if two exploits satisfy the distinct vulnerability definition above.

Scope Vulnerabilities must manifest in programs, files, and scripts that are part of the cs666 course infras-
tructure, or system programs invoked from them. You will work on the project in a container environment.
Similar to the flag project, attacks on the container infrastructure are out of scope, as these do not pertain
to cs666’s course infrastructure. That is, a vulnerability must not rely on docker to execute commands as
a different user or modify the filesystem, as this is outside the “attack surface” of the course infrastructure
you are testing. While it’s easy to break into the container, it is not in your best interest to do so—we are
grading you on the operating system vulnerabilities you find and your demonstration of them, so doing
this will not improve your grade.

(Continued on the next page)

2

http://cs.brown.edu/courses/csci1660/handin-wiki/
https://github.com/brown-csci1660/handin-source

CS1660/CS2660 Computer Systems Security Spring 2023

1.1 Required work

Each exploit receives points for its severity, which describes the impact of the exploit on the system. The
values of each category are outlined in table below.

CS1660 students will find 22 points worth of exploits, with an extra credit cap of up to 35 points. CS1620
and CS2660 will find 28 points worth of exploits, with an extra credit cap of 43 points. Extra credit points
are scaled and worth at most 15% of the total assignment grade (ie, max score is 115%).

Note: The number of required vulnerabilities has been adjusted to fit this project timeline. We do not
take delays to this project lightly, and we would very much prefer to not have you working over spring
break. If you have concerns about this, please let us know.

Severity Category Description Points
Arbitrary Code Execution Execute arbitrary code as the TA group. 10
Data Modification Change existing data that you should not be allowed to mod-

ify.
7

Data Exfiltration Get access to data that you should not have access to. 6
Data Theft Trick the infrastructure into believing that somebody else’s

data is your own (for example, use another student’s handin
as your own). If you manage to also get access to the data
yourself, that counts as Data Exfiltration (not just Data Theft).

4

Metadata Exfiltration Get access to metadata that you should not have access
to. Metadata includes whether or not other students have
handed in, the names (but not contents) of files in restricted
parts of the file tree (under /course/cs666), etc.

2

1.2 Vulnerability Reports

In a README file, you should document the following for each of the exploits you discover:

• Metadata: The severity category of the exploit (see Section 1.1), the vulnerability categories that the ex-
ploit takes advantage of (see Appendix B), and the name(s) of the file(s) that these vulnerabilities
manifest in (see the source code).

• Discovery: An explanation of how you came to this plan of attack (what the system does that makes
it vulnerable to this specific attack; references to relevant sections of the handin system’s source code;
any tools you used to make these findings; etc.).

• Impact: An explanation of how and why your attack works (what it does and why; references to
portions of your exploit script, etc.) and a justification for why it works (including how the output of
the script makes it clear that the attack was successful).

• Mitigation: Explain (from a technical perspective) how to repair the vulnerability without compro-
mising intended functionality and justify why this fix blocks your exploit (and exploits similar to it).
You should include specific references to the source code as to where fixes should be applied.

You should also include any additional files needed to perform your exploit (code, payloads, etc.) in your
final handin. Your report should allow us to easily recreate your attack from only your verbal (and written)
explanations and submitted files.

1.3 Setup guide: Accessing the Infrastructure

For this project, we have created a Docker image that you can use to run your version of cs666’s course
infrastructure. For more information, see the instructions linked here:
https://hackmd.io/@cs1660/handin-setup-guide

3

/course/cs666
https://hackmd.io/@cs1660/handin-setup-guide

CS1660/CS2660 Computer Systems Security Spring 2023

1.4 Starter repository

You can create a repository and download the starter files for loading the container environment using this
link:https://classroom.github.com/a/lDfUMq9j

This repository initially just contains a script to download and run the course infrastructure’s container
environment. This repository is mainly a place to store and submit your README and any code you write.
See the setup guide for recommendations on where to clone the repository relative to your other container
environments.

Since your primary goal is finding and writing about vulnerabilities, there is no stencil code for this project—that
is, apart from the Ivy stencil used for cs666’s project. Note that you are not required to re-implement
Ivy—remember that your task is to find a way around actually doing the assignment!

2 Other resources

2.1 cs666 whoami

To help you demonstrate exploits, we’ve provided a binary called cs666 whoami (located at
/course/cs666/bin/cs666 whoami). This is essentially a more powerful version of the normal whoami
command–It prints the uid, euid, gid, and egid of the process running it. You may find this useful for
exploits involving privilege escalation—by getting some privileged code to run this binary, you can demon-
strate the privileges you were able to obtain.

Note that you can simply run cs666 whoami anywhere in the container filesystem; you do not need the
full path to the binary to use it.

2.2 Resetting the Course Infrastructure

If you would like to refresh the infrastructure to its original state, you can do so by restarting the container
from a fresh copy of the image. To do this, run:

./run-container --clean

This will start a new container from the original image, erasing any changes made to the container filesys-
tem.

Please let us know (through Ed, TA Hours, etc.) if the above method does not work for you when resetting
cs666’s course infrastructure.

2.3 Tools and man Pages

You may find the environ(5), proc(5), credentials(7), and symlink(7) man pages helpful for
this assignment. In addition to those resources, you may find the following tools on your containers useful
(refer to their man pages for usage information):

• stat — get detailed information about a
given file or directory

• ps — lists running processes and basic info
like the commands that spawned them

• htop — live process viewer

• watch — execute a program periodically

• strace — traces system calls

• strings — prints strings in binary

• id -u <user> — gets user id

• getent group <group> — gets group id

4

https://classroom.github.com/a/lDfUMq9j

CS1660/CS2660 Computer Systems Security Spring 2023

3 Deliverables

In the security world, attacks are only taken seriously when one can demonstrate that their attack actually
allows one to perform unauthorized tasks in a clear and convincing manner. For this project, you must
prepare a recorded video demonstration of all of your attacks as part of your final handin, alongside a README
containing your vulnerability reports.

3.1 Video Demo

Your final handin must include an MP4 video file named demo.mp4 in which you demonstrate each of
your exploits against cs666’s course infrastructure. The logistical requirements for this video are as fol-
lows:

• Your video must be at most 10 minutes in length. In your video, you should only demonstrate each
of your exploits, not provide explanations––your README is the only place you need to include your
vulnerability reports.

• We recommend that you use Zoom to locally record your presentation. Zoom will also automat-
ically export a video in the proper MP4 format. See https://support.zoom.us/hc/en-us/
articles/201362473 for instructions.

• You are free to edit your video in any way that you see fit, though you aren’t required to. Similarly,
you don’t have to record your presentation in a single take, though you can if you want.

You should aim to convince your grader that each of your exploits would work against a clean instance of
the handin system just from your presentation of that exploit. By “clean” instance, we mean an instance
of the /course/cs666 that has been reset (see Section 2.2). This means that if your exploits may po-
tentially interfere with each other, you should reset the application in between the presentation of your
exploits.

3.2 Handing In

Your handin should consist of demo.mp4 and a single file named README that contains written forms of
your vulnerability reports in the order you are presenting each vulnerability in your demo video. You should also
submit any code, files, or payloads needed to execute each of your exploits. Your additional files do not
need to be named in any particular way as long as you make clear in your recorded demo and in your
README which files are relevant to each vulnerability report.

Once you’re ready to submit, please upload your starter repository (which must contain all the files you
wish to submit, including your README) to the appropriately named upload point on Gradescope.

5

https://support.zoom.us/hc/en-us/articles/201362473
https://support.zoom.us/hc/en-us/articles/201362473

CS1660/CS2660 Computer Systems Security Spring 2023

Part I

Appendix

A The ACADEMY’s Ivy Handout

Coincidentally, Blue University’s cs666 based most of their “Ivy” assignment off of the “Ivy” component
from the Cryptography project in Brown University’s CS1660, so we’ve only quoted the relevant changes in
their version of the “Ivy” handout below.

Remember, your job is specifically to not implement this assignment! Rather, your goal is to find
vulnerabilities in the autograding system that runs it.

Assignment: Ivy
Due: Friday, Mar 24 @ 11:59 pm ET

In this problem, you’ll try to steal the encryption key used by a wireless encryption protocol. This
assignment is autograded immediately upon handing in, so please make sure to double-check that
your handin matches the specifications described in this handout before submitting.

A.1 Task

The binary at /home/<your-login>/ivy-stencil/router simulates a router using the Ivy pro-
tocol. Given hex-encoded plaintexts on stdin, the router binary prints corresponding ciphertexts to
stdout in the format:

<iv> <ciphertext>

The first line of output corresponds to the ciphertext of the authentication packet that the router first
sends to the hub.

Task Write a Go program that interacts with this binary to recover the key by performing a chosen
plaintext attack. We’ve provided some stencil code as a starting point for your attack—you can find the
files in the directory called ivy-stencil in the home directory of the project container environment
(or <stencil repo root>/home/ivy-stencil).

Stencil format and autograder specifications The stencil contains two files:

1. main.go: This file contains some support code to run your attack on a simulated router. When
you turn in your code, this file will be replaced by a TA version for autograding.

2. sol.go: Your implementation should go here—there are some TODOs you can complete with
your attack code. Do not modify the function names or arguments in this file, as they need to
meet our API format in order to compile your code when autograding.

6

CS1660/CS2660 Computer Systems Security Spring 2023

Note: For security reasons, you are not permitted to use any of the following go libraries in your
final submission—you can use them for testing, but you can’t have them when submitting to the
autograder:

"flag", "fmt", "io/ioutil", "net", "net/http", "net/rpc", "net/smtp",
"os", "os/exec", "syscall", "unsafe"

Testing locally To test your program before submission, you can use the provided Makefile to
compile your code. This will produce a main executable called sol, which is run as follows:

./sol <test key>

where <test key> is the key your simulated router will use. Test keys must be specified as an 8 byte
hex-string, eg. aabbccddeeff0101.

Attacking the router binary Our stencil code works on a simulated router binary to help you un-
derstand the attack. After you have this version working, implement the attack again1(manually or
by writing a completely new program) on the router binary available on the cs666 filesystem for your
user. For example, if your username is alice, your router binary is located at: /course/cs666/
student/alice/ivy/router

Unlike the stencil, this router uses a pre-defined key. Once you have found it, submit it to the auto-
grader as the file KEY—we’ll check this against our version to make sure it is correct.

A.2 What to Hand In

Your handin should consist of two files: KEY and sol.go. KEY should contain the recovered key,
encoded in hex; sol.go should implement your attack. You should not turn in the ivy.go file from
the stencil code, as our autograder will supply its own copy of ivy.go to test your solution. (You’ll
get an error if you try to turn in ivy.go.)

You can hand in your files by running cs666 handin ivy from a directory containing your KEY
and sol.go files. As usual, you can view your current grade on this assignment (and other course
assignments) by running the report command—if you think you can improve your grade, you are
welcome to hand in the assignment as many times as you’d like until the project due date.

– the cs666 course staff

1Sounds ridiculous, right? Another reason why you shouldn’t actually try to do this assignment and instead try to break the
autograder!

7

CS1660/CS2660 Computer Systems Security Spring 2023

B Vulnerability Categories

Below, we’ve listed every vulnerability category we could imagine coming up in a project like this. This
means some categories may not necessarily have a corresponding vulnerability in cs666’s course infras-
tructure.

While we’ve discussed some of these vulnerabilities in lecture, some are probably new to you (or might not
appear in the same way you’ve seen before). Much of security involves learning about previously unknown
systems, so we expect that you’ll need to do your own research into some concepts covered in this project.
If you find yourself at a point where you feel that you haven’t been taught how to do something, that’s
okay! You should feel confident that you can do it if you set your mind to it.

For more information about each vulnerability type and examples of how they work, see the
CS1660 Handin Wiki at: http://cs.brown.edu/courses/csci1660/handin-wiki/

Vulnerability Category Category ID
Exfiltrated Process Information exfil-pi
Buffer Overflow / Memory Corruption mem-crpt
Path Sanitation Bypass path-byp
Symlink Traversal symlinkt
Unsanitized Environment Variables env-vars
Outdated System Components with Known Vulnerabilities sys-vuln
Misconfigured Blocklists / Safelists listconf
TOCTOU (Race Condition) racecond
Misconfigured File / Directory Permissions permconf
Escaping chroot or Sandbox breakout

You may also find vulnerabilities that do not necessarily fall into any one of these categories. They’re
rare, but if you find them, feel free to check in with the TAs to see if it will be accepted under a distinct
vulnerability category.

C Some Hints For Getting Started

To get started, you should start to think about places where the system could be failing to take into account
or making false assumptions about the integrity, permissions, or format of the data/code it is operating on.
Here are some ideas for things to think about as you start analyzing the system:

1. How does the hand in system make sure you only turn in code it considers needed for the assignment?
What other features/libraries/methods might Go have that are unaccounted for?

2. What ends up getting included in a submission when a student runs the hand in script? What does
the archive file extraction code accept?

3. The autograde system creates temporary files at several steps when it runs, where/how are those files
created and what actions are allowed on those files?

4. How is data passed between each component of the autograding pipeline? What kind of information
about each step might be included in process data?

8

http://cs.brown.edu/courses/csci1660/handin-wiki/

	Introduction
	Learning goals
	Requirements

	Assignment
	Required work
	Vulnerability Reports
	Setup guide: Accessing the Infrastructure
	Starter repository

	Other resources
	cs666_whoami
	Resetting the Course Infrastructure
	Tools and man Pages

	Deliverables
	Video Demo
	Handing In

	I Appendix
	The Academy's Ivy Handout
	Task
	What to Hand In

	Vulnerability Categories
	Some Hints For Getting Started

