
CS1660/CS2660 Computer Systems Security Spring 2023

Project: Dropbox
Design Due: Tuesday, April 18, 2023 @ 11:59 pm EDT

Implementation Due: Monday, May 8, 2023 @ 11:59 pm EDT
Note: Late days cannot be used on Part I: Design.

Warning: This is a team project. If you have not done so already, please fill out the partner assignment
form to create your team or ask to be matched to a team, which is av ailable here:
https://forms.gle/VmAeXmDRzprkGPZa9

On the evening of the day this project is released, you will receive an email confirming your team
assignment. You will receive a link to clone the stencil repository for your team with this email. An
announcement will be posted on Ed when you should have received it.

1 Specification 2
1.1 Motivation 2
1.2 Assignment 2

1.2.1 CS1620/CS2660 Requirement 3

I Design 3

2 Assignment 3

2.1 Grading 4
2.2 Submitting your work 5

II Implementation 5
2.3 Evaluating Your Implementation . . 5
2.4 Testing 5
2.5 Grading 5
2.6 Handing In 6

0 Introduction

After you broke into almost every single technical system at Blue University, the Information Technology
office figured that the only way to prevent vulnerabilities in their newest project was to hire you as the lead
developer.

In this project, you will implement an API for a secure file storage system, with a focus on creating a
secure design. This project will give you experience not only with writing secure software, but equally im-
portantly, experience with designing, planning, and critically analyzing secure software—carefully thinking,
threat modeling, and critiquing your own design before you write any code.

This project consists of two components: Part I, where teams will write a detailed design plan for their
system and Part II, where you will build your implementation in Python.

0.1 Logistics

This is a team project designed to be completed in teams of 2 students. Before the start of the project, you
may form a team with someone you know or asked to be matched to a team—we will send out a form on
Ed with instructions. Note that both partners are required for fill out the form, only mutual requests will
be considered.

CS1620/CS2660 requirement CS1620/CS2660 students are required to implement one additional compo-
nent in their design with additional requirements on either performance or sharing functionality (you pick
which one).

1

https://forms.gle/VmAeXmDRzprkGPZa9

CS1660/CS2660 Computer Systems Security Spring 2023

Since this requirement affects the overall system design, any team with at least one CS1620/CS2660 student
must implement the additional CS1620/CS2660 requirement. For more information, see Section 1.2.1.

Late days This project has two deadlines: an initial “checkpoint” submission, where you will submit
a design document describing your system design, and final submission with your implementation and
writeup. After you submit your design document, you will set up a meeting with a TA to discuss your de-
sign and plan for implementation. Since this review is time-sensitive with the rest of your implementation,
late days cannot be used for the design document.

For the final submission, you will submit your completed implementation and an updated design docu-
ment based on your final design. For this part, late submissions use late days for each team member—that
is, submitting one day late separately counts as one late day used by each team member.

1 Specification

Note: The section below is a quick introduction to the project, but the majority of the specifica-
tion can be found at the CS166 Dropbox Wiki at http://cs.brown.edu/courses/csci1660/
dropbox-wiki/. The online documentation is the canonical source of information on this project,
so make sure you read the wiki to learn about the main requirements.

1.1 Motivation

When you’re developing software, you naturally trust the systems that you are using—whether it’s your
computer, the campus network, the cloud services we use every day—to not act maliciously. For instance,
when you save files on your local computer or upload a file to, say, Google Drive, you trust that there aren’t
any attackers on your machine, that your hard drive won’t start flipping random bits, and so on.

In the real world, these kinds of trust assumptions may not be reasonable or valid. In industry, where
companies delegate computation to third-party resources all the time, trusting in one of those companies
implies trust in the third-party resources. However, if you’re dealing with particularly sensitive informa-
tion, it may be unreasonable to keep expanding your circle of trust.

One solution is to simply avoid outsourcing any resources and maintain physical and technical control
over every system you use. However, this may not be cost-efficient or practical. For example, it may not be
feasible for a company to maintain physical control over a secured data center, and so that company might
outsource their cloud storage to a third-party provider. However, it may be feasible for that company to
access a small, secure amount of trusted storage space, and somehow devise a way to combine both types
of trusted and untrusted storage to create a overall secure system. In this project, you will architect a secure
system that explores how to do this.

1.2 Assignment

You will write a client for a file storage service. The client must implement eight operations—CreateUser,
AuthenticateUser, UploadFile, DownloadFile, AppendFile, ShareFile, ReceiveFile, RevokeFile.

Users of the client will provide their username and password to authenticate themselves to the service.
Once authenticated, users will use the client to upload new files (and identify them with a filename chosen
by the user) and download previously uploaded files from the server. Users may also modify the contents
of their files by uploading a file with the same name as another file previously uploaded. Users will also
use the client to share files with other users (as well as revoke permissions from previously shared files) and
download files shared to them by other users.

To implement this functionality, your client will have access to two servers: dataserver, which is an un-
trusted data storage server which can store arbitrary data; and keyserver, which is a trusted public key
server.

2

http://cs.brown.edu/courses/csci1660/dropbox-wiki/
http://cs.brown.edu/courses/csci1660/dropbox-wiki/

CS1660/CS2660 Computer Systems Security Spring 2023

Using only these two servers, you will implement the functions above in such a way that your client ensures
confidentiality and integrity of files that are stored on the server.

Finally, users are not guaranteed to be online between invocations of calls (nor are they guaranteed to be
using the same machine!), and thus your client must be stateless. This means that your client may not rely
on local storage or global variables to provide its security guarantees—if the client is restarted, it must be
able to pick up where it left off given only a username and password.

1.2.1 CS1620/CS2660 Requirement

CS1620/CS2660 students must implement one of the following extra requirements:

• Efficient file updates: This adds a performance requirement to UploadFile to replace components
of files more efficiently. This requirement is detailed in Section 2.2.1 of the wiki. For further informa-
tion, also see the notes/recording for the project gearup.

• Delegated sharing: Students who want an extra challenge can implement a more advanced version
of file sharing where users inherit the ability to share file from the owner. This component is more
open-ended—for details, see the description in Section 2.3.2 of the wiki.

In general, your implementation for these requirements is more open-ended than the rest of the project.
As you build your design, your writeup should describe in detail how your implementation meets the
requirements while preserving confidentiality and integrity, and discuss any tradeoffs you considered as
you were developing your design. We will grade your design mostly based on manual review of your code
and your design document.

Part I

Design

2 Assignment

To begin your project, you will plan out your client implementation and submit a detailed design document.
This project is more open-ended than our other projects so you have a chance to do some critical thinking
about designing secure systems. In terms of learning goals for this course, we’re not just interested in
your ability to pick a strong hash function or avoid path escaping vulnerabilities—we want you to think
about how you’ll store data and use the cryptographic tools available to you in order to build a secure
system.

In addition, once you submit your design document, you will meet with a TA to discuss you work before
you begin your implementation. Spending time on your design now will make your implementation easier
later!

Collaboration We encourage you to do lots of brainstorming with your partner, and consider many possi-
ble designs. At all stages of your project, we encourage you to talk with other teams about design tradeoffs
and possible attacks—so long your design and all the code you write is your own.

Your design document should be around 4 pages (+ any number of pages for diagrams), and must include
the following sections:

• System overview. Summarize the design of your client:

– Explained your design decisions in such a way that a fellow CS1660/CS2660 student could im-
plement your design just by reading your design document. The goal is to be concise, while

3

https://cs.brown.edu/courses/csci1660/dropbox-wiki/client-api/storage/upload-file.html#cs162-extension
https://cs.brown.edu/courses/csci1660/dropbox-wiki/client-api/sharing/index.html#optional-cs1620-cs2660-extension-delegated-sharing

CS1660/CS2660 Computer Systems Security Spring 2023

providing enough detail to understand how your implementation works. At a minimum, you
should address:

* How users are “authenticated”

* How files are stored on the dataserver

* How your design allows AppendFile to meet its efficiency requirements

* How files are shared with other users (that is, how ShareFile and ReceiveFile work)

* How previously shared files are revoked

* (CS1620/CS2660 only) How your design allows UploadFile to meet its efficiency require-
ments OR how your design handles delegated sharing

– We highly encourage you to include system diagrams if it makes sense for your design. For
examples, we recommend taking a look at slides 16-21 of the cloud security lecture.

• Security analysis. Describe at least four and at most five concrete attacks that an adversary may conduct
against the system and explain how your specific design protects against each attack. You will be
graded on the four analyses which provide you the most credit.

– You should make sure your attacks cover different aspects of your system design. (That is, don’t
provide four attacks that all concern file storage, but no attacks involving sharing or revocation.)

– You should not consider the following types of attacks, which are not part of our threat model or
the client specification:

* Breach of confidentiality of unencrypted data

* Breach of integrity of unauthenticated data

* Attacks involving the leakage of the length of a filename

– Example: “After user A shares a file with user B and later revokes access, user B may try to call
ReceiveFile again to regain access to the file. To prevent a revoked user from regaining access
this way, our design...” This example describes a concrete attack that can be derived from the
provided security definitions and function specification. (To be clear, your analysis may not include
this example described here.)

– The attacks you describe must have a security consequence and cannot simply be a bug. That is,
your proposed attacks must result in an attacker breaking confidentiality or integrity guarantees
or executing an unprivileged action.

– In your final submission, you should write tests to check if your implementation is vulnerable
to the attack you describe, if possible. If you don’t believe this is feasible, please describe what
would be required to test for this attack in your document.

Your design document should focus specifically on how you will implement the operations in the Client
API. You do not need to consider any networking-related components (such as how file data is transferred
from client-to-server, or how to store files in a real filesystem or database)—while these components would
be important in a real system, they are not part of the version we are building here.

Additionally, your design document does not need to be formal (that is, you may use bullet points when
describing your service’s design).

2.1 Grading

You will submit your design document twice. The initial draft of your design document is due at the Design
due date (Tuesday, April 18, 2023 @ 11:59 pm EDT) and will be graded on completion of each of the sections
and will count for 5% of the total grade for the project. After submitting your design document, we will

4

CS1660/CS2660 Computer Systems Security Spring 2023

provide instructions on how to sign up for a meeting with the TAs to discuss your design and receive
feedback.

For your final submission (Monday, May 8, 2023 @ 11:59 pm EDT), you must submit an updated version
of your Design document that reflects any changes to your implementation design. This version of the
document should reflect your final design and discussion about your security analysis. Your final writeup
and analysis is worth 35% of your grade for the project.

2.2 Submitting your work

You should hand in your design document as a PDF on Gradescope. Only one partner needs to submit a
PDF, then you can use the team assignment dropdown in Gradescope to select your partner. By default,
we will grade only submissions that any listed with both team members—if you have any issues with this
process, please let us know.

At the top of all of the pages of your document (i.e. in the header), you should clearly mark whether or not
the team includes at least one CS1620/CS2660 student (which means you must complete the CS1620/CS2660
requirements for the design document).

Part II

Implementation

After submitting your design document, you will implement your client design in Python. The CS166
Dropbox Wiki details most of the technical requirements for this part of the project, but here we detail some
logistics about the implementation.

Note: Looking for a stencil link? You will receive a link in the email confirming your team assignment.
An announcement will be posted on Ed when you should have received it.

2.3 Evaluating Your Implementation

We will test your client application with a series of functionality and security tests. Some test results are
available before the deadline, and others will only be available after the deadline.

2.4 Testing

We strongly encourage you to write unit tests for your client application. Your tests should verify correct
functionality of the client, correct handling of erroneous inputs, and any security problems. Each test should
be defined in a separate function.

We have defined some basic functionality tests are already defined in test.py. We strongly encourage
you to write more tests to check the functionality of your program and to test out possible attacks. We’ll
provide more guidance on how to test your work during the Gearup.

2.5 Grading

Your final client implementation and tests are worth approximately 60% of the final grade for this project.
Your implementation will be manually reviewed for functionality in combination with any autograder
tests and your design document. The exact weighting of the autograder tests on grading is subject to
change.

5

CS1660/CS2660 Computer Systems Security Spring 2023

2.6 Handing In

You will hand in your implementation code and testing code on Gradescope. Only one partner should
hand in—you must use the team selection dropdown in Gradescope to select your partner’s name when
you hand in.

Instructions on how to hand in your code are documented on the wiki.

6

	Introduction
	Logistics

	Specification
	Motivation
	Assignment
	CS1620/CS2660 Requirement

	I Design
	Assignment
	Grading
	Submitting your work

	II Implementation
	Evaluating Your Implementation
	Testing
	Grading
	Handing In

