
Automating 
safety property 
verification, intro 
to liveness



Inductive invariants
A property p of a transition system S is an inductive 
invariant of S if:

1. The initial state s satisfies p, and
2. If a state s satisfies p, and (s, t) is a transition, then the 

state t also satisfies p
(Board discussion: Prove (x >= 0 ∧ y > 0) ∨ (x > 0 ∧ y >= 
0) 

2



3



Proving non-inductive invariants
To establish that a property p is an invariant of 
the transition system S, find a property q that:

1. q is an inductive invariant of S, and
2. the property q implies the property p (that is, 

a state satisfying q is guaranteed to satisfy p)

(Board discussion: Prove B => x > 0 ^ y > 0)

4



How would you deal with this 
invariant?

8) If the system is on and the control knob hasn’t changed for 
290 ms, the desired temperature as sent by status message 
obeys the formula 5400 + 25 * (control knob reading) / 8 with 
an error of at most 3 degrees F (300 centidegrees).

5



on/off button
current_temp
desired_temp
mils

status_msg
AC LED



Stateful invariants
For a transition system S, Create a safety monitor FSM  called M 
where:
⬢ inputs of M are a subset of the inputs and outputs of S
⬢ Some subset E of the states of M are designated as “error” states
⬢ The behavior of M is designed such that if the sequence of inputs to M 

leads M to an error state in E, this is an invariant violation

Compose M and S. The invariant becomes that any state in E is not 
reachable

7



“
What similarities do you see 
between the safety monitor 

FSM definition and the 
runtime monitor you wrote in 

lab 8?

8



Open and closed systems
To automate invariant verification, we need to 
work with a closed system

[Lee/Seshia, chapter 15] 9



Reminder: closed AC model
Environment:

⬢ Time
⬢ Button
⬢ Current temp
⬢ Desired temp

10

Note: for the logics/computation models we are talking about here, we 
are using discrete systems (but not necessarily deterministic!)

2. AC_ON
true* / mils := mils + 1

true*/ 
currentTemp := 
currentTemp - 1



Automated reachability analysis
A property p of a transition system* S is an invariant of S if 
every reachable state of S satisfies p

How would you automatically determine the set of reachable 
states?

Assume a system of finite states

(Verification for a system of infinite states is undecidable)

11



Depth-first search

[Lee/Seshia, chapter 15] 12



DFS board example for AC

13

1. AC_ON 2. AC_OFF

(mils-saved_m) >= 2 ∧ (cur_temp <= 
70)
/ saved_m := mils

(mils-saved_m) >= 2 ∧ (cur_temp > 70) 
/ saved_m := mils

(mils-saved_m) < 2 ∨ (cur_temp <= 70)
/ mils := mils + 1

(mils-saved_m) < 2 ∨ (cur_temp <= 70)
/ cur_temp := cur_temp + 1

(mils-saved_m) < 2 ∨ (cur_temp > 70)
/ cur_temp := cur_temp - 1

(mils-saved_m) < 2 ∨ (cur_temp > 70)
/ mils := mils + 1



1. AC_ON 2. AC_OFF

mils >= 2 ∧ (cur_temp <= 70)
/ mils := 0

mils >= 2 ∧ (cur_temp > 70) / mils := 0 mils < 2 ∨ (cur_temp <= 70)
/ mils := mils + 1
cur_temp := cur_temp + 1

mils < 2 ∨ (cur_temp <= 70)
/ cur_temp := cur_temp + 1

mils < 2 ∨ (cur_temp > 70)
/ cur_temp := cur_temp - 1

mils < 2 ∨ (cur_temp > 70)
/ mils := mils + 1
cur_temp := cur_temp - 1



“
How would you modify the 

DFS algorithm to either 
produce a “YES” or a 
counterexample for a 

property p?

15



Reference for DFS question

16



Safety requirements vs liveness 
requirements
Safety: nothing bad ever happens

Liveness: something good eventually happens

Means system is functioning as intended

System requirements are often liveness 
requirements

17



“
What are some liveness 

requirements for the AC?

18



.

19



“
How would you monitor that 

a liveness requirement is 
fulfilled?

20



Saying something eventually happens is the 
same thing as saying that it is not the case that it 
always doesn’t happen

21

Verifying some liveness properties


