
17: Testing



Project proposals
Graded on completion (everyone got a 6/6)

Everyone got comments – some ask for changes to be made 
before the milestone report/demo, so please read them

General comments

⬢ Make sure there is some complexity (whole project shouldn’t 
just link an input to an output – what kind of control can you 
introduce?)

⬢ Check for compatibility with Arduino (SAMD architecture for 
libraries, 3.3V for parts)

2



Watchdog timers
⬢ Watchdogs are meant to detect system hangs

⬡ Pet them in specific places in the code
⬡ Successful pet = code still running = no watchdog reset
⬡ WDTs should not be used as regular timers!

⬢ Actively detecting a failure (such as malformed input) and acting upon 
that failure should not be handled by a watchdog

⬢ Also think about what it means for the system to reset: is resetting 
safe behavior for your system?
⬡ Consider using early warning interrupt to warn user instead

3



Interrupts
Read the datasheet to find out how your components work

⬢ Be sure to say what is triggering the interrupt, not just the result
⬢ Some of the proposed “interrupt” ideas could only be 

accomplished with polling
⬡ Does it make sense to interrupt on an analog signal (or a 

“change” in something that’s not a digital electrical signal?)
⬡ MKR1000 WiFi/Serial API does not expose an interrupt for 

communication (have to poll)
4



Today

5



What is testing?

6

Inputs or workload

Oracle 
(“ground 
truth”)

Program

Match??



V model: artifacts guide testing

Product 
requirements

Software 
requirements

High 
level/architecture 
design

Low level/module 
design Unit testing

Integration testing

(System-level) 
Software testing

Acceptance 
testing

7

User-
facing 
reqs

SW-
facing 
reqs

Arch. 
diagram, 

seq. 
diagrams

FSMs

At each level: testing asks, 
“does the implementation 

match the design?”



Why not just system/acceptance testing?

8

Co
st

 o
f f

ix
in

g 
de

fe
ct

Requirements→Design→Implementation→Unit test→Integration test→System test→Acceptance test→Production



Unit testing
Check correctness of a module

One unit test = test a single function/method/path
Cannot test even single function calls exhaustively - consider 
f(int x, int y, int z)

Best place to test edge case values

Both structural and functional testing

9



Functional vs. structural testing
Functional

“Black box” testing

No underlying knowledge of code

Example goal: exercise every requirement for 
module, or every transition in FSM

10

Structural

“White box” testing

Knowledge of structure of code - guides testing

Example: exercise every line of code in function 
call



“
What are the tradeoffs 

between black box and white 
box testing?

11



How to unit test an implementation 
based on FSM?

12

Want to test updateFSM’s implementation as-is (without 
making changes to it)

1. STOPPED 2. MOVE_UP

buttonUPpressed ^  ㄱ(deskHeight = maxHeight) / 
motorControl := UP

state updateFSM(state currentState, bool buttonUPpressed, …) 
{
  state nextState = currentState;
    switch(currentState) {
      case STOPPED:
        // transition 1-2
        if (buttonUPpressed && (deskHeight != maxHeight)) {         
          nextState = MOVE_UP;
          setMotorControl(UP);
        }
        break;
      case MOVE_UP:
        // transition 2-1
        if (!buttonUPpressed || (deskHeight == maxHeight) { 
          nextState = STOPPED;
          setMotorControl(STOPPED);
        }
        break;
      default:
        error(“invalid state!”);
    }
  return nextState;
}

ㄱbuttonUPpressed v (deskHeight = maxHeight) / 
motorControl := STOPPED



Test for transition 1-2

endState = updateFSM(STOPPED, true, 35)

assert(endState == MOVE_UP)

assert(motor is moving up)

13

guided by FSM/spec (to test that code 
matches FSM): black-box testing

Test: transition correctly taken based on inputs, 
variables/outputs set correctly

1. STOPPED 2. MOVE_UP

buttonUPpressed ^  ㄱ(deskHeight = maxHeight) / 
motorControl := UP

ㄱbuttonUPpressed v (deskHeight = maxHeight) / 
motorControl := STOPPED

Test should be 

independent of any 

other sequence of 

transitions!



Mock out functions
// #define TESTING // uncomment to test

#ifndef TESTING // means TESTING is not defined

void setMotorControl(MotorEnum me) { ...normal operation … }

#else

MotorEnum motorState;

void setMotorControl(MotorEnum me) { motorState = me;}

#endif

14



Updated test of FSM transition 1-2
endState = updateFSM(STOPPED, true, 35)

assert(endState == MOVE_UP)

assert(motorState == UP)

15

Is this structural or functional testing?



Edge case/unexpected inputs
What should this do?
updateFSM(STOPPED, true, 5000)

updateFSM(STOPPED, true, -2)

16

What about this?
updateFSM(DONT_MOVE, true, 40)

1. STOPPED 2. MOVE_UP

buttonUPpressed ^  ㄱ(deskHeight = maxHeight) / 
motorControl := UP

ㄱbuttonUPpressed v (deskHeight = maxHeight) / 
motorControl := STOPPED



Structural testing

17

int some_fun(int x, int y, int z) {
if (x == 3 && y < 0 ) {
 // do something;
} else {
  // do something else
}

q = x + z;

if (q < y) {
  if (x == z) {
    // do another thing
  }
  // do a fourth thing
}

}

What should guide 
your selection of 
test inputs for this 
function, if you know 
the underlying 
code? 



Coverage (a preview)
Notion of how completely a piece of code has been tested 
with a particular set of tests, with respect to a specific metric

Examples:

⬢ What % of requirements have been tested?
⬢ What % of lines of code have been tested?

100% coverage does not mean 100% tested, but it’s a start 
to assess testing thoroughness

18



Unit testing summary

19

Cheaper to catch defects here than at any other stage of 
testing

Perform structural (white-box) or functional (black-box) testing 
on modules/components/functions


