Tt o
<o <ans

a
FRORE L <o -
JAeANN
L™
FOTE N NN

17: Testing

‘ Project proposals

Graded on completion (everyone got a 6/6)

Everyone got comments - some ask for changes to be made
before the milestone report/demo, so please read them

General comments
Make sure there is some complexity (whole project shouldn'’t
just link an input to an output - what kind of control can you

introduce?)
Check for compatibility with Arduino (SAMD architecture for

libraries, 3.3V for parts)

‘ Watchdog timers

Watchdogs are meant to detect system hangs

Pet them in specific places in the code

Successful pet = code still running = no watchdog reset

WDTs should not be used as regular timers!
Actively detecting a failure (such as malformed input) and acting upon
that failure should not be handled by a watchdog
Also think about what it means for the system to reset: is resetting
safe behavior for your system?

Consider using early warning interrupt to warn user instead

‘ Interrupts

Read the datasheet to find out how your components work

Be sure to say what is triggering the interrupt, not just the result
Some of the proposed “interrupt” ideas could only be
accomplished with polling
Does it make sense to interrupt on an analog signal (or a
“change” in something that's not a digital electrical signal?)
MKR1000 WiFi/Serial APl does not expose an interrupt for
communication (have to poll)

‘ Today

Project
Definition

Concept of
Operations L

Requirements
and
Architecture

Detailed
Design

Implar

Operation
cation : =
Maintenance

System
Verification
and Validation

Integration,
Test, and
Verification

Project
est and

ntation

) 4

Time

‘ What is testing?

Inputs or workload

< Match?? >

V model: artifacts guide testing

User-
facing
regs

Product
requirement

Acceptance
testing

SW-
facing
regs

Software
requirements

(System-level)
Software testing

High d.ArCh' At each level: testing asks,
level/architectur 'asgeﬁm’ Integration testing “does the implementation
design diagrams match the design?”

Low level/modul

design Unit testing

‘ Why not just system/acceptance testing?

Cost of fixing defect

i L = T T T T T T 1

Requirements— Design—Implementation—Unit test—Integration test—System test—Acceptance test—Production 8

‘ Unit testing

Check correctness of a module

One unit test = test a single function/method/path

Cannot test even single function calls exhaustively - consider
f(int x, inty, int 2)

Best place to test edge case values

Both structural and functional testing

‘ Functional vs. structural testing

Functional Structural
“Black box” testing “White box” testing
No underlying knowledge of code Knowledge of structure of code - guides testing
Example goal: exercise every requirement for Example: exercise every line of code in function
module, or every transition in FSM call

10

0

What are the tradeoffs
between black box and white
box testing?

How to unit test an implementation
based on FS M ? T buttonUPpressed v (deskHeight = maxHeight) /

state updateFSM(state currentState, bool buttonUPpressed, ...) motorControl := STOPPED
{ T~
state nextState = currentState;
switch(currentState) {
case STOPPED: 1. STOPPED 2. MOVE_UP

// transition 1-2
if (buttonUPpressed &% (deskHeight != maxHeight)) { \\\\\\\‘~_~_____———”//////
nextState = MOVE_UP;
setMotorControl(UP); buttonUPpressed » 1 (deskHeight = maxHeight) /
} motorControl := UP
break;
case MOVE_UP:
// transition 2-1
if (!buttonUPpressed || (deskHeight == maxHeight) {
nextState = STOPPED;
} setMotorControl(STOPPED); Want to test updateFSM’s implementation as-is (without
break; making changes to it)
default:
error(“invalid state!”);

} 12
return nextState;

‘ Test for transition 1-2

Test: transition correctly taken based on inputs,

variables/outputs set correctly

endState = updateFSM(STOPPED, true, 35)
— T buttonUPpressed v (deskHeight = maxHei

assert(endState == MOVE_UP) e

assert(motor is moving up)

T~
\(1. STOPPED } {2. MOVE_UP }
[

guided by FSM/SpeC (to test that code buttonUPpressed ~ —1(deskHeight = maxHeight) /
matches FSM): black-box testing motorControl := UP

13

‘ Mock out functions

// #tdefine TESTING // uncomment to test
##tifndef TESTING // means TESTING is not defined

void setMotorControl(MotorEnum me) { ...normal operation ...

#else
MotorEnum motorState;
void setMotorControl(MotorEnum me) { motorState = me;}

#tendif

¥

14

‘ Updated test of FSM transition 1-2

endState = updateFSM(STOPPED, true, 35)
assert(endState == MOVE_UP)
assert(motorState == UP)

15

‘ Edge case/unexpected inputs

What ShOU|d thIS do? T buttonUPpressed v (deskHeight = maxHeight) /

motorControl :== STOPPED

updateFSM(STOPPED, true, 50@0)\(T
1

updateFSM(STOPPED, true, -2) . STOPPED } EZ.MOVE_UP }

What about this? T

buttonUPpressed »~ 7 (deskHeight = maxHeight) /

updateFSM(DONT_MOVE, true, 40) ool Ppressed

16

‘ Structural testing

int some_fun(int x, int y, int z) {
if (x == 3 & y <0) {
// do something;
} else {
// do something else

}

What should guide
your selection of
test inputs for this
function, if you know
the underlying
code?

q= X+ z;

if (9 <y) {
if (x == z) {
// do another thing

}
// do a fourth thing

}

17

‘ Coverage (a preview)

Notion of how completely a piece of code has been tested
with a particular set of tests, with respect to a specific metric

Examples:

What % of requirements have been tested?
What % of lines of code have been tested?

100% coverage does not mean 100% tested, but it’s a start
to assess testing thoroughness

18

‘ Unit testing summary

Cheaper to catch defects here than at any other stage of
testing

Perform structural (white-box) or functional (black-box) testing
on modules/components/functions

19

