15 & 16: High-level
and detailed
design (FSMs)




Next week!

V model

Concept of Opera(; ion
: an
Operations Vergcation
Project Requirements ysten
Definition and Verification

Architecture and Validation

Integration,
Test, and
Verification

Detailed
Design

ImplaMantation

) 4

Time
Image source


https://en.wikipedia.org/wiki/V-Model_(software_development)

Left side of V model

Product What the product does from the
requirements customer POV
Software What the product does from the SW
requirements POV (high—level, not the “how”)
High What modules there are in the system,
level/architecture which module performs which function,
design how modules communicate
Low level/module Flowcharts, statecharts/finite state

design machines, algorithms...




Software
requirements
° High
Product requirements S
::\)/V;I/module
Our electric height-adjustable table allows you to easily and design

effortlessly change from sitting to standing positions throughout
your day. Raising and lowering the table is simple, using its ultra
quiet, feature-rich electric mechanism. It's an essential tool to any

modern workspace.

Customer-facing
Can be a list of features
« Changing your posture often keeps you more engaged and more Used in marketing

comfortable

Details:

» Meetings are significantly shorter when standing vs. sitting

» Height-adjustable tables are essential to modern workspaces

and prized by office workers everywhere

» Push-button activation with height display readout

3 memory positions Image source


https://teknionstore.com/products/hispace-height-adjustable-table-48width?variant=39662787494022

‘ Software requirements

Written with specific wording and format

“Shall” - the software must do this to meet requirements
“Should” - the software has this goal

Labeled or numbered (RS-1, RS-2, RS-2.a..)
Precise and measurable
Quantitative over qualitative
Can be tested

What the software does, not how 5



‘ Adjustable height desk inputs

Current height”

Buttons: 1, 2, 3, up, down, M

‘00 DEEY 00

Image source



https://d2r72yk5wmppdj.cloudfront.net/m/1895ca9409812e2e/original/hiSpace-Instruction-Hangtag_Booklet.pdf

‘ Adjustable height desk outputs

Motor command (stopped, up, down)

Display



‘ Adjustable height desk requirements

R1: If the desk is not at its maximum height, and the up button is held,
the motor shall be commanded UP

R2: If the M button is pressed and released, and one of the numbered
buttons [1, 2, 3] is pressed and released within 10 seconds, then the
current height shall be stored as a preset for the corresponding
numbered button

R3: If one of the numbered buttons [1, 2, 3] is held, the motor should be
commanded such that the desk height moves to the corresponding
preset height



0

Come up with additional
requirement(s) that refine the
preset behavior

R3: If one of the numbered buttons [1, 2, 3] is held, the
motor should be commanded such that the desk height
moves to the corresponding preset height



‘ Refined requirements

R3: If one of the numbered buttons [1, 2, 3] is held, the motor should be
commanded such that the desk height moves to the corresponding
preset height

R3-A: If the corresponding preset is not stored, the motor shall
be commanded STOPPED

R3-B: If the desk height is at the preset height, the motor shall be
commanded STOPPED

R3-C: If the desk height is higher/lower than the preset height,
the motor shall be correspondingly commanded DOWN/UP as
long as the numbered button is held and the desk has not yet
reached the preset height.

Product
requirements

High
level/architect
ure design

Low
level/module
design

10



‘ High-level/architecture design

How components fit together and what the interfaces are

Boxes-and-arrows diagram: boxes are components,
arrows are interfaces

General rule: should fit on one page

Details of components are left to detailed design

1



Motor controller*

Product
requirements

Software
requirements

Current height of desk

aﬂd (\’\p’ Low
Motor cor;\t‘;‘pped) B
dO\Nn’ or
Button [1, 2, 3, M, Up, Down]
pressed or held down
Height to display

Button array

LED Display

Boxes-and-arrows for adjustable height desk

Microcontroller -

12



Product
requirements

Software
requirements

o
| I

‘ Sequence diagrams

level/module
design

Shows interaction between components
Columns: components

Arrows between columns: data sent across
interfaces

Temporally arranged (lower is later)
Usually one for each customer scenario

Scenario is variant of a use case
13



Scenario: user wants to raise desk,
presses up button and desk rises

Button array Microcontroller LED Display

button UP pressed

button UP released

—>

Motor
Controller
get current height
receive current height |
display current heiiht
command UP
‘b
command STOPPED
‘b

Product

requirements
Software
requirements

Low
level/module
design

14



Product
requirements

Software
requirements

Scenario: store current height as
preset 2

o
| I

level/module
design

Button array Microcontroller LED Display 'C\D/I(()):\ct)rroller
M pressed, M released
Get current height
*

Current height

e

Display current height
—l-

[ Start 10s timer ]

—>>

Store current
height in preset 2

2 pressed

Display nothing, display
current height, display
nothing

= 3 .




Alternative scenario for same use

case

Button array Microcontroller LED Display '(\D/Ig:lct)rroller
M pressed, M released

Get current height
C heigh
urrent heignt

—
Display current height
-l

[ Start 10s timer ]

10s timer

finishes

Display nothing

Product
requirements

Software
requirements

Low
level/module
design

16



Product
requirements

Software
requirements

High

‘ Finite state machines e

Low-level design for a module

Shows the change in state of a module

Contrast with flowchart, which just shows flow of

computation

guard / action

At basic level, composed of:

States (one state is initial state) il
indicator
Guards (predicates on inputs) Lee/Seshia chapter 3
Figure 3.3: Visual notation for a finite state machine. 17

Actions (setting outputs)



‘ Variants

Multiple ways to define statecharts/FSMs

Mealy vs. Moore, deterministic vs non-deterministic, etc

Extended FSMs: state variables (variables that are not
inputs or outputs) can appear in guards and actions

We will use deterministic, extended FSMs as
defined by Lee/Seshia

Will be useful when we talk about modeling

Translate well to coding

level/module
design

18



Product
requirements

Software
requirements

° High
‘ FSM example: HW problem e
Consider a variant of the thermostat of example 3.5. In this variant, there is only one temperature-
threshold, and to avoid chattering the thermostat simply leaves the heat on or off for at least a fixed
amount of time. In the initial state, if the temperature is less than or equal to 20 degrees Celsius, it
turns the heater on, and leaves it on for at least 30 seconds. After that, if the temperature is greater

than 20 degrees, it turns the heater off and leaves it off for at least 2 minutes. It turns it on again
only if the temperature is less than or equal to 20 degrees

Design an FSM that behaves as described, assuming it reacts exactly once every 30 seconds.

19



Inputs:
temp

Outputs:
heat (ON/OFF); initially OFF

L <0 [ sk :=ON
W\P /CN\(‘(;:.-O

Extended FSM (alternative design)
Inputs:
Current temp

Outputs:
Heater (ON/OFF); initially OFF

Variables: counter; initial value doesn't matter

20



‘ FSM conventions/rules

o Define inputs, outputs, and variables
- Define initial values for outputs/variables
o Label each state with a number and a short, descriptive name
© Label the start state
o Guards for transitions out of a state:
= should be mutually exclusive
- should only be predicated on inputs and variables
o Outputs on transitions should only set outputs and variables

21



Adjustable-height desk FSM
Whiteboard

22



Inputs:
Button (1, 2, 3, UP, DOWN, M) pressed: boolean

Current desk height: fixed-point number ‘ | Wi l
Outputs: ‘ * ‘\N“
Motor command: (UP, DOWN, STOPPED): enum b <

LED display: fixed-point number or NONE

Constants: /M > “ P

maxHeight, minHeight (fixed point numbers)

Variables (for extended FSM):
Presets 1, 2, 3 (fixed-point numbers) or NONE

Initial values:
Motor command: STOPPED
LED display: NONE

Presets 1, 2, 3: NONE 1 WPM A

YUen DOUN ‘wu)‘
(note: this is just a subset of the
entire FSM that we would draw. We W > W\“ﬁ@k/

also need to enforce that no other

buttons are being pressed in our w\h-\' (5= N\}l\

guards, as we talked about in class.)

23



Implementation of FSM

typedef enum { STOPPED = 1, MOVE_UP = 2 } state;

state updateFSM(state currentState, bool buttonUPpressed, ...) {
state nextState = currentState; // stay in same state by default
switch(currentState) {
case STOPPED:
if (buttonUPpressed && (deskHeight != maxHeight)) {
nextState = MOVE_UP;
setMotorControl(UP);
}
break;
case MOVE_UP:
if (!buttonUPpressed || (deskHeight == maxHeight) {
nextState = STOPPED;
setMotorControl (STOPPED);
}
break;
default:
error(“invalid state!”);

}

return nextState;

Product
requirements

Software
requirements

High
level/architect
ure design

Low
level/module
design

TbuttonUPpressed v (deskHeight = maxHeight) /
motorControl := STOPPED

T~

. STOPPED 2. MOVE_UP

\_/‘

buttonUPpressed » 71 (deskHeight = maxHeight) /
motorControl := UP

24



0

When should updatefSM be
called?

state updateFSM(state currentState,
bool buttonUPpressed, ...)



‘ Time-triggered vs. event-triggered design

Time-triggered: Event-triggered:
computation to computation to
(potentially) change state (potentially) change state
happens every x ms, happens when an input
regardless if inputs have changes
changed
/I'imer interrupt OR schedule in loop \ 4 I
eg.
void loop () { Call updateFSM in every
static state S = STOPPED; interrupt/task that polls input
state = updateFSM(...);
delay (100) ; \\ //

1



0

Pros/cons of time- vs.
event-triggered design?



0

How do we know that our
design has met our
requirements?



‘ Traceability

Ensures that all requirements have been implemented
and tested

Often done using a traceability matrix

Example: each column is a requirement; each row is a transition

“x”in a cell if the transition helps meet the requirement
If a column has no x’s, means requirement isn't being met

If a row has no x’s, means transition is unnecessary (or
requirement is missing/wasn't stated!)

Product
requirements

Software
requirements

High
level/architect
ure design

Low
level/module
design

\ Implementation

29



‘ Example: requirements to FSM traceability

R1: If the desk is not at its maximum height, and the up button is held, the motor shall be
commanded UP

R2: If the M button is pressed and released, and one of the numbered buttons [1, 2, 3] is
pressed and released within 10 seconds, then the current height shall be stored as a
preset for the corresponding numbered button

T buttonUPpressed v (deskHeight = maxHeight) /
motorControl :== STOPPED

R1 R2 R3 T~

1. STOPPED } [2. MOVE_UP }

w

buttonUPpressed » 71 (deskHeight = maxHeight) /
motorControl := UP 30

T1-2 X

T 21




Summary

Concept of Opera; o8

‘ ificati an

Operations Ve”;',ﬁf;‘,tm“ Maintenance

. Validation
Project Requirements System
Definition and Verification
Architecture and Validation
Integration, .
Detailed Test, and Project
Design Verification Test and
Integration
) Irnplamantation
This week Next week

>
Time
Image source

31


https://en.wikipedia.org/wiki/V-Model_(software_development)

