
15 & 16: High-level
and detailed
design (FSMs)

V model

2Image source

Next week!

https://en.wikipedia.org/wiki/V-Model_(software_development)

Left side of V model

3

Product
requirements

Software
requirements

High
level/architecture
design

Low level/module
design

What the product does from the
customer POV

What the product does from the SW
POV (high-level, not the “how”)

What modules there are in the system,
which module performs which function,
how modules communicate

Flowcharts, statecharts/finite state
machines, algorithms...

Product requirements

4image source

Customer-facing
Can be a list of features
Used in marketing

Product
requirements

Software
requirements

High
level/architect
ure design

Low
level/module
design

https://teknionstore.com/products/hispace-height-adjustable-table-48width?variant=39662787494022

Software requirements
Written with specific wording and format

“Shall” - the software must do this to meet requirements

“Should” - the software has this goal

Labeled or numbered (RS-1, RS-2, RS-2.a…)

Precise and measurable

Quantitative over qualitative

Can be tested

What the software does, not how 5

Product
requirements

Software
requirements

High
level/architect
ure design

Low
level/module
design

Adjustable height desk inputs
Current height*

Buttons: 1, 2, 3, up, down, M

6
Image source

Product
requirements

Software
requirements

High
level/architect
ure design

Low
level/module
design

https://d2r72yk5wmppdj.cloudfront.net/m/1895ca9409812e2e/original/hiSpace-Instruction-Hangtag_Booklet.pdf

Adjustable height desk outputs
Motor command (stopped, up, down)

Display

7

Product
requirements

Software
requirements

High
level/architect
ure design

Low
level/module
design

Adjustable height desk requirements
R1: If the desk is not at its maximum height, and the up button is held,
the motor shall be commanded UP

R2: If the M button is pressed and released, and one of the numbered
buttons [1, 2, 3] is pressed and released within 10 seconds, then the
current height shall be stored as a preset for the corresponding
numbered button

R3: If one of the numbered buttons [1, 2, 3] is held, the motor should be
commanded such that the desk height moves to the corresponding
preset height

8

Product
requirements

Software
requirements

High
level/architect
ure design

Low
level/module
design

“
Come up with additional

requirement(s) that refine the
preset behavior

9

R3: If one of the numbered buttons [1, 2, 3] is held, the
motor should be commanded such that the desk height
moves to the corresponding preset height

Refined requirements

10

Product
requirements

Software
requirements

High
level/architect
ure design

Low
level/module
designR3: If one of the numbered buttons [1, 2, 3] is held, the motor should be

commanded such that the desk height moves to the corresponding
preset height

R3-A: If the corresponding preset is not stored, the motor shall
be commanded STOPPED

R3-B: If the desk height is at the preset height, the motor shall be
commanded STOPPED

R3-C: If the desk height is higher/lower than the preset height,
the motor shall be correspondingly commanded DOWN/UP as
long as the numbered button is held and the desk has not yet
reached the preset height.

High-level/architecture design
How components fit together and what the interfaces are

Boxes-and-arrows diagram: boxes are components,
arrows are interfaces

General rule: should fit on one page

Details of components are left to detailed design

11

Product
requirements

Software
requirements

High
level/architect
ure design

Low
level/module
design

12

Motor controller*

Microcontroller

LED Display

Button array

Boxes-and-arrows for adjustable height desk

Product
requirements

Software
requirements

High
level/architect
ure design

Low
level/module
design

Button [1, 2, 3, M, Up, Down]
pressed or held down

*Here we make the assumption that the motor
controller is able to output the current height
of the desk (for example, based on initial
calibration and on how long the motor is
commanded on). This may not actually be how
the controller receives the height on the
product, but it’s an assumption of how there
might be bidirectional communication
between two components in a product
architecture.

Height to display

Current height of desk

Motor command (up,

down, or stopped)

Shows interaction between components

Columns: components

Arrows between columns: data sent across
interfaces

Temporally arranged (lower is later)

Usually one for each customer scenario

Scenario is variant of a use case
13

Sequence diagrams

Product
requirements

Software
requirements

High
level/architect
ure design

Low
level/module
design

Scenario: user wants to raise desk,
presses up button and desk rises

14

Product
requirements

Software
requirements

High
level/architect
ure design

Low
level/module
design

Button array Microcontroller LED Display Motor
Controller

button UP pressed
get current height

receive current height
display current height

command UP

button UP released

command STOPPED

Scenario: store current height as
preset 2

15

Product
requirements

Software
requirements

High
level/architect
ure design

Low
level/module
design

Button array Microcontroller LED Display Motor
Controller

M pressed, M released
Get current height

Current height

Display current height

Start 10s timer

Store current
height in preset 2

2 pressed

Display nothing, display
current height, display
nothing

Alternative scenario for same use
case

16

Product
requirements

Software
requirements

High
level/architect
ure design

Low
level/module
design

Button array Microcontroller LED Display Motor
Controller

M pressed, M released
Get current height

Current height

Display current height

Start 10s timer

Display nothing

10s timer
finishes

Finite state machines
Low-level design for a module

Shows the change in state of a module
Contrast with flowchart, which just shows flow of
computation

At basic level, composed of:

States (one state is initial state)

Guards (predicates on inputs)

Actions (setting outputs) 17

Product
requirements

Software
requirements

High
level/architect
ure design

Low
level/module
design

Lee/Seshia chapter 3

Variants
Multiple ways to define statecharts/FSMs

Mealy vs. Moore, deterministic vs non-deterministic, etc

Extended FSMs: state variables (variables that are not
inputs or outputs) can appear in guards and actions

We will use deterministic, extended FSMs as
defined by Lee/Seshia

Will be useful when we talk about modeling

Translate well to coding 18

Product
requirements

Software
requirements

High
level/architect
ure design

Low
level/module
design

FSM example: HW problem
Consider a variant of the thermostat of example 3.5. In this variant, there is only one temperature
threshold, and to avoid chattering the thermostat simply leaves the heat on or off for at least a fixed
amount of time. In the initial state, if the temperature is less than or equal to 20 degrees Celsius, it
turns the heater on, and leaves it on for at least 30 seconds. After that, if the temperature is greater
than 20 degrees, it turns the heater off and leaves it off for at least 2 minutes. It turns it on again
only if the temperature is less than or equal to 20 degrees

Design an FSM that behaves as described, assuming it reacts exactly once every 30 seconds.

19

Product
requirements

Software
requirements

High
level/architect
ure design

Low
level/module
design

20

FSM conventions/rules
⬢ Define inputs, outputs, and variables

⬡ Define initial values for outputs/variables
⬢ Label each state with a number and a short, descriptive name

⬡ Label the start state
⬢ Guards for transitions out of a state:

⬡ should be mutually exclusive
⬡ should only be predicated on inputs and variables

⬢ Outputs on transitions should only set outputs and variables

21

Product
requirements

Software
requirements

High
level/architect
ure design

Low
level/module
design

Adjustable-height desk FSM
Whiteboard

22

Product
requirements

Software
requirements

High
level/architect
ure design

Low
level/module
design

23

Implementation of FSM

24

Product
requirements

Software
requirements

High
level/architect
ure design

Low
level/module
design

Implementation

1. STOPPED 2. MOVE_UP

buttonUPpressed ^ ㄱ(deskHeight = maxHeight) /
motorControl := UP

typedef enum { STOPPED = 1, MOVE_UP = 2 } state;

state updateFSM(state currentState, bool buttonUPpressed, …) {
state nextState = currentState; // stay in same state by default
switch(currentState) {
case STOPPED:

if (buttonUPpressed && (deskHeight != maxHeight)) {
nextState = MOVE_UP;
setMotorControl(UP);

}
break;

case MOVE_UP:
if (!buttonUPpressed || (deskHeight == maxHeight) {

nextState = STOPPED;
setMotorControl(STOPPED);

}
break;

default:
error(“invalid state!”);

}
return nextState;

}

ㄱbuttonUPpressed v (deskHeight = maxHeight) /
motorControl := STOPPED

“
When should updateFSM be

called?

state updateFSM(state currentState,
 bool buttonUPpressed, …)

25

Time-triggered:
computation to
(potentially) change state
happens every x ms,
regardless if inputs have
changed

26

Time-triggered vs. event-triggered design
Event-triggered:
computation to
(potentially) change state
happens when an input
changes

Timer interrupt OR schedule in loop
e.g.
void loop() {
 static state S = STOPPED;
 state = updateFSM(...);
 delay(100);
}

Call updateFSM in every
interrupt/task that polls input

“
Pros/cons of time- vs.

event-triggered design?

27

“
How do we know that our

design has met our
requirements?

28

Traceability
Ensures that all requirements have been implemented
and tested

Often done using a traceability matrix
Example: each column is a requirement; each row is a transition

“x” in a cell if the transition helps meet the requirement

If a column has no x’s, means requirement isn’t being met

If a row has no x’s, means transition is unnecessary (or
requirement is missing/wasn’t stated!)

29

Product
requirements

Software
requirements

High
level/architect
ure design

Low
level/module
design

Implementation

traceability

Example: requirements to FSM traceability
R1: If the desk is not at its maximum height, and the up button is held, the motor shall be
commanded UP

R2: If the M button is pressed and released, and one of the numbered buttons [1, 2, 3] is
pressed and released within 10 seconds, then the current height shall be stored as a
preset for the corresponding numbered button

…

30

R1 R2 R3

T 1-2 X

T 2-1

1. STOPPED 2. MOVE_UP

buttonUPpressed ^ ㄱ(deskHeight = maxHeight) /
motorControl := UP

ㄱbuttonUPpressed v (deskHeight = maxHeight) /
motorControl := STOPPED

Summary

31Image source

This week Next week

https://en.wikipedia.org/wiki/V-Model_(software_development)

