
10: Embedded 
Programming and 
Watchdog timers

Keep posting project pitches!



“
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Besides speed and memory 
use, what are some other 

metrics we may target when 
optimizing embedded code?



Embedded programming
Reasons embedded programming differs from 
general-purpose computing:

⬢ Cannot assume portability
⬢ Context switching from interrupts
⬢ Limited by hardware 

⬡ memory, power, cpu speed, I/O latency
⬢ Care more about scheduling/deadlines
⬢ Safety-critical applications
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Example tradeoffs – lookup tables
A switch statement or an array in memory gives the answer 
for every possible input, instead of doing a computation
switch(x) {

case 3:
return 2;
break;

case 10:
return 3;
break;

case 1:
return 1;
break;
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Example tradeoffs – global variables
Declare a global variable that sits in memory 
instead of passing it around in function calls
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Example tradeoffs - inline functions
Compiler copies the contents of the function any time a call 
to the function appears in code
inline int add(int a, int b) {

return a + b;
}
...
void main() {

...
var3 = add(var1, var2);
var4 = add(var2, var3);

}
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void main() {
…
var3 = var1 + var2;
var4 = var2 + var3;

}



“
Why is recursion dangerous 

on an MCU?
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Coding practices: portability
Word size

int will mean different things on an 8-bit CPU vs a 
32-bit CPU

Tip: be specific about size

int8, uint16, etc

What if you need to emulate a 16-bit int on a 8-bit CPU?
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y z

Fake it with multi-precision math! 



“
Floating point is often 

avoided in MCU applications. 
Why?
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Why
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Represent fractional values with implicit fixed divisor
Decimal example: if fixed divisor were 1000, we would represent 0.04 as 
“40” (e.g. counting by milliseconds instead of seconds)

In binary, we use powers of two as divisors

Human-readable format: “x.y”

Machine format: fixed divisor not stored data; interpreted in code
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Fixed point



Fixed point example
Interpret the bits “01010110” in different formats:
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format regular/int 1.7 5.3

divisor n/a 2^7 = 128

Interpreted 
value

86



Fixed point math
Addition/subtraction work as usual

Let the CPU perform the computation and 
interpret the mantissa at the same spot

Multiplication: need to truncate

See inset in 8.2 of Lee/Seshia for more info
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z * x

z * w

y * w

y * x

qr



“
What are some reasons 

(software bugs or external 
causes) that embedded 
software might hang?
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Petting the watchdog
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http://www.youtube.com/watch?v=vTY-oIHpxew


Watchdog timers
Special timer peripheral that counts down to 0 
on a clock that can’t be powered off

Can be reset by writing a value to a special 
register (“petting” the watchdog)

If reaches 0, resets (or shuts down) entire system

Idea is to detect system hang
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Rules for watchdog timers
When to pet - before it reaches 0

Have an estimate for how long your execution takes

Make sure it can catch any task failure

How to pet - complex enough so that it’s not an accident
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Anti-patterns for watchdogs
Using a watchdog for control/functionality

Petting in too many places

Using a timer to pet the watchdog

Turning the watchdog off in software
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A preview: periodic tasks
n tasks each with a given period and worst case 
execution time (for now assume same period)
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(read and store sensor)

(do complex computation 
on last sensor reading)

(log output to server)



What’s the problem with this?
blueTask { 

… do stuff; … 

pet_watchdog; }

purpleTask { 

… do stuff; … 

pet_watchdog; }

goldTask { 

… do stuff; … 

pet_watchdog; } 21



Blocking vs. non-blocking functions
Simplest task 
scheduler:

void loop() {

  blueTask();

  purpleTask();

  goldTask();

}
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Blocking function:
void goldTask() {

  res = 0;

  while (! res) {

    res = serverTask();

  }

  … // compute on res

}

Non-blocking function:
void goldTask() {

  res = serverTask();

  if (res) {

    // compute on res

  }

}



Blocking vs. non-blocking functions
Simplest task 
scheduler:

void loop() {

  blueTask();

  purpleTask();

  goldTask();

}
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Blocking function:
void goldTask() {

  int res = 0;

  while (! res) {

    res = serverSend();

  }

  … // compute on res

  petWatchdog();

}

Non-blocking function:
void goldTask() {

  int res = serverSend();

  if (res) {

    … // compute on res

    petWatchdog();

  }

}



“
How would you pet the 

watchdog for a multitasked 
system?
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Challenge mode


