
10: Embedded
Programming and
Watchdog timers

Keep posting project pitches!

“

2

Besides speed and memory
use, what are some other

metrics we may target when
optimizing embedded code?

Embedded programming
Reasons embedded programming differs from
general-purpose computing:

⬢ Cannot assume portability
⬢ Context switching from interrupts
⬢ Limited by hardware

⬡ memory, power, cpu speed, I/O latency
⬢ Care more about scheduling/deadlines
⬢ Safety-critical applications

3

Example tradeoffs – lookup tables
A switch statement or an array in memory gives the answer
for every possible input, instead of doing a computation
switch(x) {

case 3:
return 2;
break;

case 10:
return 3;
break;

case 1:
return 1;
break;

4

Example tradeoffs – global variables
Declare a global variable that sits in memory
instead of passing it around in function calls

5

Example tradeoffs - inline functions
Compiler copies the contents of the function any time a call
to the function appears in code
inline int add(int a, int b) {

return a + b;
}
...
void main() {

...
var3 = add(var1, var2);
var4 = add(var2, var3);

}
6

void main() {
…
var3 = var1 + var2;
var4 = var2 + var3;

}

“
Why is recursion dangerous

on an MCU?

7

Coding practices: portability
Word size

int will mean different things on an 8-bit CPU vs a
32-bit CPU

Tip: be specific about size

int8, uint16, etc

What if you need to emulate a 16-bit int on a 8-bit CPU?

8

w x
y z

Fake it with multi-precision math!

“
Floating point is often

avoided in MCU applications.
Why?

9

Why

10

11

Represent fractional values with implicit fixed divisor
Decimal example: if fixed divisor were 1000, we would represent 0.04 as
“40” (e.g. counting by milliseconds instead of seconds)

In binary, we use powers of two as divisors

Human-readable format: “x.y”

Machine format: fixed divisor not stored data; interpreted in code

12

Fixed point

Fixed point example
Interpret the bits “01010110” in different formats:

13

format regular/int 1.7 5.3

divisor n/a 2^7 = 128

Interpreted
value

86

Fixed point math
Addition/subtraction work as usual

Let the CPU perform the computation and
interpret the mantissa at the same spot

Multiplication: need to truncate

See inset in 8.2 of Lee/Seshia for more info

14

w x

y z

z * x

z * w

y * w

y * x

qr

“
What are some reasons

(software bugs or external
causes) that embedded
software might hang?

15

Petting the watchdog

16

http://www.youtube.com/watch?v=vTY-oIHpxew

Watchdog timers
Special timer peripheral that counts down to 0
on a clock that can’t be powered off

Can be reset by writing a value to a special
register (“petting” the watchdog)

If reaches 0, resets (or shuts down) entire system

Idea is to detect system hang

17

Rules for watchdog timers
When to pet - before it reaches 0

Have an estimate for how long your execution takes

Make sure it can catch any task failure

How to pet - complex enough so that it’s not an accident

18

Anti-patterns for watchdogs
Using a watchdog for control/functionality

Petting in too many places

Using a timer to pet the watchdog

Turning the watchdog off in software

19

A preview: periodic tasks
n tasks each with a given period and worst case
execution time (for now assume same period)

20

(read and store sensor)

(do complex computation
on last sensor reading)

(log output to server)

What’s the problem with this?
blueTask {

… do stuff; …

pet_watchdog; }

purpleTask {

… do stuff; …

pet_watchdog; }

goldTask {

… do stuff; …

pet_watchdog; } 21

Blocking vs. non-blocking functions
Simplest task
scheduler:

void loop() {

 blueTask();

 purpleTask();

 goldTask();

}

22

Blocking function:
void goldTask() {

 res = 0;

 while (! res) {

 res = serverTask();

 }

 … // compute on res

}

Non-blocking function:
void goldTask() {

 res = serverTask();

 if (res) {

 // compute on res

 }

}

Blocking vs. non-blocking functions
Simplest task
scheduler:

void loop() {

 blueTask();

 purpleTask();

 goldTask();

}

23

Blocking function:
void goldTask() {

 int res = 0;

 while (! res) {

 res = serverSend();

 }

 … // compute on res

 petWatchdog();

}

Non-blocking function:
void goldTask() {

 int res = serverSend();

 if (res) {

 … // compute on res

 petWatchdog();

 }

}

“
How would you pet the

watchdog for a multitasked
system?

24

25

26

Challenge mode

