Keep posting project pitches!

10: Embedded
Programming and
Watchdog timers



0

Besides speed and memory
use, what are some other
metrics we may target when
optimizing embedded code’?



‘ Embedded programming

Reasons embedded programming differs from
general-purpose computing:

Cannot assume portability
Context switching from interrupts
Limited by hardware

memory, power, cpu speed, I/0 latency
Care more about scheduling/deadlines
Safety-critical applications



‘ Example tradeoffs - lookup tables

A switch statement or an array in memory gives the answer
for every possible input, instead of doing a computation

switch(x) {

case 3:
return 2;
break;

case 10:
return 3;
break;

case 1:
return 1;

break;



‘ Example tradeoffs - global variables

Declare a global variable that sits in memory
instead of passing it around in function calls



‘ Example tradeoffs - inline functions

Compiler copies the contents of the function any time a call
to the function appears in code

inline int add(int a, int b) { void main () {
return a + b;
} var3 = varl + var?;
vard4d = var?2 + var3;
void main () { }
var3 = add(varl, wvar?2);

vard = add(var2, var3);



0

Why is recursion dangerous
on an MCU?



@ Coding practices: portability

Word size

int will mean different things on an 8-bit CPU vs a
32-bit CPU

Tip: be specific about size

=y z

int8,uintle, etc

What if you need to emulate a 16-bit int on a 8-bit CPU?

Fake it with multi-precision math!



0

Floating point is often
avoided in MCU applications.
Why?






QUESTION 1
Logistics/warmup0.30000000000000004 / 0.3 pts

11 Multiple choice 041/01pts
1.2 — Fill-in-the-blank 041/ 01 pts

1.3 — Select-all 041/01pts

1



‘ Fixed point

Represent fractional values with implicit fixed divisor

Decimal example: if fixed divisor were 1000, we would represent 0.04 as
“40” (e.g. counting by milliseconds instead of seconds)

In binary, we use powers of two as divisors
Human-readable format: “x.y”

Machine format: fixed divisor not stored data; interpreted in code

12



‘ Fixed point example

Interpret the bits “01010110” in different formats:

format regular/int 1.7 5.3
divisor n/a 2N7 =128

Interpreted 86

value

13



‘ Fixed point math

Addition/subtraction work as usual W

Let the CPU perform the computation and x

interpret the mantissa at the same spot z*
Multiplication: need to truncate Z"w
See inset in 8.2 of Lee/Seshia for more info o

= yw

14



0

What are some reasons
(software bugs or external
causes) that embedded
software might hang?



Petting the watchdog

16


http://www.youtube.com/watch?v=vTY-oIHpxew

‘ Watchdog timers

Special timer peripheral that counts down to O
on a clock that can’t be powered off

Can be reset by writing a value to a special
register (“petting” the watchdoq)

If reaches O, resets (or shuts down) entire system

|dea is to detect system hang

17



‘ Rules for watchdog timers

When to pet - before it reaches O

Have an estimate for how long your execution takes

Make sure it can catch any task failure

How to pet - complex enough so that it's not an accident

18



‘ Anti-patterns for watchdogs

Using a watchdog for control/functionality
Petting in too many places
Using a timer to pet the watchdog

Turning the watchdog off in software

19



‘ A preview: periodic tasks

n tasks each with a given period and worst case
execution time (for now assume same period)

(read and store sensor)

B | (do complex computation

on last sensor reading)

(log output to server)

20



‘ What'’s the problem with this?

blueTask { A i
. do stuff;
pet watchdog; } -
purpleTask {
. do stuff;

pet watchdog; }
goldTask {
. do stuff;
pet watchdog; } 21



‘ Blocking vs. non-blocking functions

Simplest task
scheduler:

void loop () {
blueTask() ;
purpleTask() ;
goldTask () ;

Blocking function: Non-blocking function:

void goldTask () { void goldTask() {

serverTask () ;

res = 0; res =
while (! res) { if (res) {

res = serverTask() ; // compute on res
} }
.. // compute on res }

22



‘ Blocking vs. non-blocking functions

Simplest task
scheduler:

void loop () {
blueTask () ;
purpleTask() ;
goldTask () ;

Blocking function: Non-blocking function:

void goldTask () { void goldTask () {

int res = 0; int res = serverSend() ;
while (! res) { if (res) {
res = serverSend() ; .. // compute on res

} petWatchdog() ;

.. // compute on res }

petWatchdog() ; }

23



0

How would you pet the
watchdog for a multitasked
system?






‘ Challenge mode

L ma mao

26



