
08: MCU
datasheets ct’d

Project
Brainstorm/propose projects on Ed thread

Project matching form will release early next week
Project must:

Use PWM, ADC, or DAC
Have at least one interrupt service routine
Have a watchdog timer (doesn’t count as your ISR)
Use at least one of: Serial communication, Wifi, Timer/counter

2

Why we’re thinking about the
project so early
Time to find you resources

Time to refine the design

Time to order supplies

Time for embedded SE process

3

4

Skills in upcoming labs

5

6

Keywords for sharing data
static

Value of local variable will persist between function calls (is in memory rather
than the stack)
Useful in a function like loop() when you don’t want to declare a global variable
Still local to the function

volatile
Means variable can change outside of main execution (e.g. by an ISR)
Always use volatile when working with variables that change in ISRs!
Tells compiler not to make certain optimizations (never keep value in a register)

7

8

Goal of “bare
metal
programming”
is to configure
bits inside of the
peripheral
registers (blue),
which directly
control the
hardware
(green)

Dependencies for using DAC

Configuring pin in PORT for DAC

Multiplexing
⬢ I/O on MCU comes in many varieties: GPIO,

DAC, ADC, PWM, interrupts, timers/counters,
communication

⬢ Limited # of pins on device – pins can be
configured to have one of multiple purposes

⬢ Multiplexing is the word for selecting this
purpose

PMUX register in PORT

name of register

roles/names of bits inside the register

Values for named bits

Configuring DAC

What this means
Setup:

⬢ Select reference (CTRLB.REFSEL)
⬢ Enable (CTRLA.ENABLE)

Operation:

⬢ Write 10-bit value to DATA

Note: I misspoke about this in class.
We need to use VDDANA, which is the
supply voltage (3.3 V) that powers the
chip, NOT INTREF.

Final to-do list:
⬢ Configure dependencies

⬡ PORT: select Multiplexer function B for
PA02

⬡ GCLK: configure GCLK_DAC
⬢ Configure DAC peripheral

⬡ Select reference (CTRLB.REFSEL)
⬡ Enable (CTRLA.ENABLE)

⬢ Operate DAC peripheral

Using the header files
The header file for each peripheral has definitions that
begin with [PERIPHERAL NAME]_[REGISTER NAME].
So, if we want to use PORT’s PMUX register, we look
for PORT_PMUX in port.h

definition of the bit
locations/names within the
register

definitions for values PMUXE
bits take on: offset of those
bits within the register, values
that these bits can take on

these are the relevant
definitions (values shifted
to the correct position)

this mask has
1s in all of the

bits of PMUXE
and 0s

everywhere
else. See how

we could use it
on the next

slide

Writing the correct value to PMUX
 // Select MUX function B for PA02

 PORT->Group[PORTA].PMUX[1].reg = PORT_PMUX_PMUXE_B;

 // Note that the above would overwrite the PMUXO bits.

 // If we need to keep them (i.e. if we're also configuring PA01),

 // we should use bit operations and masking, e.g.

 // PORT->Group[PORTA].PMUX[1].reg &= ~PORT_PMUX_PMUXE_Msk

 // (To clear the PMUXE bits using a mask)

 // PORT->Group[PORTA].PMUX[1].reg |= PORT_PMUX_PMUXE_B

 // (To set the value of those bits without affecting the other bits)

In dac.h:

 Note that the name doesn't exactly match up with the
datasheet (VDDANA), but the value the header file defines
(0x1) does. This is probably for compatibility reasons with
related boards – as long as we’ve double-checked that we
match the datasheet, we can use this

void setup() {

 // ** Configure PORT **

 // Reset config bits for PA02 and enable MUX: TODO (see example in lab 3)

 // Select MUX function B for PA02

 PORT->Group[PORTA].PMUX[1].reg = PORT_PMUX_PMUXE_B;

 // ** Configure GCLK_DAC **

 // TODO (see example in lab 3)

 // ** Configure DAC **

 // Select internal voltage reference

 DAC->CTRLB.reg = DAC_CTRLB_REFSEL_AVCC;

 // Enable DAC

 DAC->CTRLA.reg = DAC_CTRLA_ENABLE;

 // We could have also done this using bit manipulation, e.g.:

 // DAC->CTRLA.reg = (1 << 1); // Move value 1 to bit position 1

}

setup function

void loop() {

 // Output 2.5V on DAC pin

 // Compute DAC value for 2.5 V

 // (write 25/33 instead of 2.5/3.3 to avoid floating point division)

 unsigned int dac_val = 1023 * 25 / 33;

 // Write to DAC DATA register

 DAC->DATA.reg = dac_val;

}

loop function: DAC operation

