

‘ Project

Brainstorm/propose projects on Ed thread
Project matching form will release early next week
Project must:
Use PWM, ADC, or DAC
Have at least one interrupt service routine
Have a watchdog timer (doesn’t count as your ISR)
Use at least one of: Serial communication, Wifi, Timer/counter

Why we’re thinking about the
project so early

Time to find you resources
Time to refine the design
Time to order supplies

Time for embedded SE process

if you haven't played this game!

Iincredible work on your pl‘OjGCtS, €S 1600!We want to bras about YOII!
= Arun, Jason, Stephen, and Prof. Zizyte

scrambier

)

N Y lnscrtag Sapling Springer\Eg;
R ~ N < A (=: 7_‘) N\

3
53
)
g
3

e €

‘ Keywords for sharing data

static
Value of local variable will persist between function calls (is in memory rather
than the stack)
Useful in a function like loop() when you don’t want to declare a global variable
Still local to the function

volatile
Means variable can change outside of main execution (e.g. by an ISR)

Always use volatile when working with variables that change in ISRs!
Tells compiler not to make certain optimizations (never keep value in a register)

23.6 Functional Description
Figure 23-2. Overview of the PORT

Goal of “bare
metal
programming”
is to configure
bits inside of the
peripheral
registers (blue),
which directly
control the
hardware Synchronizer
(green) |

Input to Other Modules Analog Input/Output

APB Bus

<

‘ Dependencies for using DAC

35.5.1 /O Lines
Using the DAC Controller’s I/O lines requires the 1/0 pins to be configured using the port configuration (PORT).

Related Links
23. PORT - I/O Pin Controller

35.5.3 Clocks
The DAC bus clock (CLK_DAC_APB) can be enabled and disabled by the Power Manager, and the default state of
CLK_DAC_APB can be found in the Peripheral Clock Masking section.

A generic clock (GCLK_DAC) is required to clock the DAC Controller. This clock must be configured and enabled in
the Generic Clock Controller before using the DAC Controller. Refer to GCLK — Generic Clock Controller for details.

This generic clock is asynchronous to the bus clock (CLK_DAC_APB). Due to this asynchronicity, writes to certain
registers will require synchronization between the clock domains. Refer to 35.6.7 Synchronization for further details.
Related Links

16.6.2.6 Peripheral Clock Masking

15. GCLK - Generic Clock Controller

‘ Configuring pin in PORT for DAC

23.6.3.1 Pin Configurations Summary
Table 23-2. Pin Configurations Summary

m INEN PULLEN OUT | Configuration
0 0 0 X ‘ Reset or analog I/O: all digital disabled

‘ Multiplexing

/0O on MCU comes in many varieties: GPIO,
DAC, ADC, PWM, interrupts, timers/counters,
communication

Limited # of pins on device - pins can be
configured to have one of multiple purposes
Multiplexing is the word for selecting this
purpose

Table 7-1. PORT Function Multiplexing for SAM D21 A/B/C/D Variant Devices and SAM DA1 A/B Variant Devices

SAMD2xE | SAMD2xG | SAMD2xJ AC PTC DAC SERCOM(2)(3) SERCOM-ALT TC(4)
mec
1 1 1 PAOO VDDANA EXTINT[0] SERCOM1/ TCC2/WO[0]
PAD[0]
2 2 2 PAO1 VDDANA EXTINT[1] SERCOM1/ TCC2/WO[1]
PAD([1]
3 3 3 PAO2 VDDANA EXTINT[2] AIN[O] Y[o] || vout TCC3!
WOJ[0]

PMUX register in PORT

23.8.12 Peripheral Multiplexing n

Name: PMUX :
Offset: 0x30 + n*0x01 [n=0..15] name of register
Reset: 0x00

Property: = PAC Write-Protection

There are up to 16 Peripheral Multiplexing registers in each group, one for every set of two subsequent 1/O lines. The
n denotes the number of the set of 1/0 lines.

Bit 7 6 5 4 3 2 1 0
[PMUXO[3:0] PMUXE[3:0]
Access RW RW RW RwW RW RW RW RW
Reset 0 0 0 0 0 0 0 0

roles/names of bits inside the register

‘ Values for named bits

Bits 3:0 - PMUXE[3:0] Peripheral Multiplexing for Even-Numbered Pin

These bits select the peripheral function for even-numbered pins (2*n) of a PORT group, if the corresponding
PINCFGy.PMUXEN bit is '1".

Not all possible values for this selection may be valid. For more details, refer to the I/O Multiplexing and
Considerations.

PMUXE[3:0] Name Description

0x0 A Peripheral function A selected.
0x1 B Peripheral function B selected
0x2 C Peripheral function C selected
0x3 D Peripheral function D selected
Ox4 E | Peripheral function E selected
0x5 F Peripheral function F selected

0x6 G Peripheral function G selected
Ox7 H Peripheral function H selected
0x8 I Peripheral function | selected

‘ Configuring DAC

35.6

35.6.1

35.6.2
35.6.2.1

Functional Description

Principle of Operation

The DAC converts the digital value located in the Data register (DATA) into an analog voltage on the DAC output
(VOUT).

A conversion is started when new data is written to the Data register. The resulting voltage is available on the DAC
output after the conversion time. A conversion can also be started by input events from the Event System.

Basic Operation

Initialization

The following registers are enable-protected, meaning they can only be written when the DAC is disabled
(CTRLA.ENABLE is zero):

+ Control B register (CTRLB)
+ Event Control register (EVCTRL)

Enable-protection is denoted by the Enable-Protected property in the register description.

Before enabling the DAC, it must be configured by selecting the voltage reference using the Reference Selection bits
in the Control B register (CTRLB.REFSEL).

35.6.2.2

35.6.2.3

35.6.2.4

Enabling, Disabling and Resetting

The DAC Controller is enabled by writing a '1' to the Enable bit in the Control A register (CTRLA.ENABLE). The DAC
Controller is disabled by writing a '0' to CTRLA.ENABLE.

The DAC Controller is reset by writing a '1' to the Software Reset bit in the Control A register (CTRLA.SWRST). All
registers in the DAC will be reset to their initial state, and the DAC Controller will be disabled. Refer to the CTRLA
register for details.

Enabling the Output Buffer

To enable the DAC output on the Voyr pin, the output driver must be enabled by writing a one to the External Output
Enable bit in the Control B register (CTRLB.EOEN).

The DAC output buffer provides a high-drive-strength output, and is capable of driving both resistive and capacitive
loads. To minimize power consumption, the output buffer should be enabled only when external output is needed.

Digital to Analog Conversion

The DAC converts a digital value (stored in the DATA register) into an analog voltage. The conversion range is
between GND and the selected DAC voltage reference. The default voltage reference is the internal reference
voltage. Other voltage reference options are the analog supply voltage (VDDANA) and the external voltage reference
(VREFA). The voltage reference is selected by writing to the Reference Selection bits in the Control B register
(CTRLB.REFSEL).

The output voltage from the DAC can be calculated using the following formula:

DATA

Vout = 0x3FF VREF

A new conversion starts as soon as a new value is loaded into DATA. DATA can either be loaded via the APB bus
during a CPU write operation, using DMA, or from the DATABUF register when a START event occurs. Refer to
35.6.5 Events for details. As there is no automatic indication that a conversion is done, the sampling period must be
greater than or equal to the specified conversion time.

‘ What this means

Setup:

o Select reference (CTRLB.REFSEL)
o Enable (CTRLA.ENABLE)

Operation:

o Write 10-bit value to DATA

_ DATA
VOUT = Ga3FF TROF

35.8.2 Control B
Note: | misspoke about this in class.

Name: CTRLB) ;
Offset: 0x01 We need to use VDDANA, which is the
Reset: 000 ; supply voltage (3.3 V) that powers the
Property: PAC Write-Protection, Enable-Protected Chip, NOT INTREF.
Bit 7 6 5 4 3 2 1 0
REFSEL[1:0] BODWP | VPD | LEFTADJ | IOEN EOEN
Access RIVW RIW R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0

Bits 7:6 — REFSEL[1:0] Reference Selection
This bit field selects the Reference Voltage for the DAC.

Value Name Description

0x0 INTREF Internal voltage reference
LO_x_} VDDANA Analog voltage supply
[0x2 'VREFA External reference

0x3 | 'Reserved

35.8.1 Control A

Name: CTRLA
Offset: 0x00
Reset: 0x00

Property: = PAC Write-Protection, Write-Synchronized

Bit 7 6 5 4 3 2 1 0
RUNSTDBY | ENABLE | | SWRST |
Access R/W R/W
Reset 0 0 0

Bit 1 - ENABLE Enable DAC Controller

Due to synchronization there is delay from writing CTRLA.ENABLE until the peripheral is enabled/disabled. The value
written to CTRLA.ENABLE will read back immediately and the corresponding bit in the Synchronization Busy register
(SYNCBUSY.ENABLE) will be set. SYNCBUSY.ENABLE will be cleared when the operation is complete.

Value Description

0 The peripheral is disabled or being disabled.

1 The peripheral is enabled or being enabled.

35.8.8 Data DAC

Name: DATA
Offset: 0x08
Reset: 0x0000

Property: PAC Write-Protection, Write-Synchronized

Bit 15 14 13 12 11 10 9 8
DATA[15:8]

Access w W W W W W W W

Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
DATA[7:0]

Access w w w w w W w w

Reset 0 0 0 0 0 0 0 0

Bits 15:0 - DATA[15:0] Data value to be converted
DATA register contains the 10-bit value that is converted to a voltage by the DAC. The adjustment of these 10 bits
within the 16-bit register is controlled by CTRLB.LEFTADJ.

Table 35-1. Valid Data Bits

CTRLB.LEFTADJ DATA Description

0 ' DATA[9:0] ' Right adjusted, 10-bits
1 DATA[15:6] Left adjusted, 10-bits

‘ Final to-do list:

Configure dependencies
PORT: select Multiplexer function B for
PAO2
GCLK: configure GCLK_DAC

Configure DAC peripheral
Select reference (CTRLB.REFSEL)
Enable (CTRLA.ENABLE)

Operate DAC peripheral

‘ Using the header files

The header file for each peripheral has definitions that
begin with [PERIPHERAL NAME]_[REGISTER NAME].
So, if we want to use PORT’s PMUX register, we look

for PORT_PMUX in port.h

this mask has
1s in all of the
bits of PMUXE

and Os

2
everywhere

else. See how
we could use it
on the next
slide

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
98
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

/¥ -mmn-

typedef

PORT_PMUX :

union {

struct {
uint8_t PMUXE:4;
uintg8_t PMUX0:4;

} bit;

uints_

t reg;

} PORT_PMUX_Type;
#endif /* !(defined(__ASSEMBLY__) || defined(__IAR_SYSTEMS_ASM_)) */

/*1< Type

(PORT Offset: ©x30) (R/W 8) GROUP Peripheral Multiplexing n
#if 1 (defined(__ASSEMBLY) || defined(__IAR_SYSTEMS_ASM_))

#define
#define
#define
#define
#define
#define

\#define

PORT_PMUX_PMUXE_B
PORT_PMUX_PMUXE_C
PORT_PMUX_PMUXE_D
PORT_PMUX_PMUXE_E
PORT_PMUX_PMUXE_F
PORT_PMUX_PMUXE_G
PORT_PMUX_PMUXE_H

(PORT_PMUX_PMUXE_B_Val
(PORT_PMUX_PMUXE_C_Val
(PORT_PMUX_PMUXE_D_val
(PORT_PMUX_PMUXE_E_Val
(PORT_PMUX_PMUXE_F_Val
(PORT_PMUX_PMUXE_G_Val
(PORT_PMUX_PMUXE_H_val

<<

<<

<<

<<

PORT_PMUX_PMUXE_P0s)
PORT_PMUX_PMUXE_P0s)
PORT_PMUX_PMUXE_P0s)
PORT_PMUX_PMUXE_P0s)
PORT_PMUX_PMUXE_Pos)
PORT_PMUX_PMUXE_P0s)

PORT_PMUX_PMUXE_Pos) j

definition of the bit

/*!< bit: @.. 3 Peripheral Multiplexing Even 7
/*1< bit: 4.. 7 Peripheral Multiplexing odd */ locations/names within the
/*!< Structure used for bit access oy .

used for register access %/ reQISter

#define PORT_PMUX_OFFSET 0x30 /**< \brief (PORT_PMUX offset) Peripheral Multiplexing n */
#define PORT_PMUX_RESETVALUE 0x00 /**< \brief (PORT_PMUX reset_value) Peripheral Multiplexing n */
#define PORT PMUX_PMUXE_Pos 0 /**< \brief (PORT PMUX) Peripheral Multiplexing Even */

(_sdefine PORT pMux_PMUXE sk (OxFu_<< _PORT PMUX_PMUXE Pos)) definitions for values PMUXE
#define PORT_PMUX_PMUXE (value) ((PORT_PMUX_PMUXE_Msk & ((value) << PORT_PMUX_PMUXE_Pos))) . .
#define PORT_PMUX_PMUXE_A_Val oxou /**< \brief (PORT_PMUX) Peripheral function A selected */ bltS take on: Offset Of those
#define PORT_PMUX_PMUXE_B_Val oxlu /**< \brief (PORT_PHUX) Peripheral function 8 selected */ DitS Within the register, values
#define PORT_PMUX_PMUXE_C_Val ox2u /**< \brief (PORT_PMUX) Peripheral function C selected */ that these b|tS can take on
#define PORT_PMUX_PMUXE_D Val ox3u /**< \brief (PORT_PMUX) Peripheral function D selected */
#define PORT_PMUX_PMUXE_E_val ox4u /**< \brief (PORT_PMUX) Peripheral function E selected */
#define PORT_PMUX_PMUXE_F_Vval ox5u /**< \brief (PORT_PMUX) Peripheral function F selected */
#define PORT_PMUX_PMUXE_G_Val ox6u /**< \brief (PORT_PMUX) Peripheral function G selected */
#defi PORT_PMUX_PMUXE H Val X7y Lx*< \brief (P i ion H selected */

f#define PORT_PMUX_PMUXE_A (PORT_PMUX_PMUXE_A_Val << PORT_PMUX_PMUXE_Pos) \

these are the relevant
definitions (values shifted
to the correct position)

‘ Writing the correct value to PMUX

//

Select MUX function B for PAQO2

PORT->Group [PORTA] . PMUX[1] .reg = PORT PMUX PMUXE B;

//
//
//
//
//
//
//

Note that the above would overwrite the PMUXO bits.
If we need to keep them (i.e. if we're also configuring PAO1l),
we should use bit operations and masking, e.g.

PORT->Group [PORTA] .PMUX[1] .reg &= ~PORT PMUX PMUXE Msk

(To clear the PMUXE bits using a mask)
PORT->Group [PORTA] .PMUX[1] .reqg |= PORT PMUX PMUXE B
(To set the value of those bits without affecting the other bits)

‘ In dac.h:

Note that the name doesn't exactly match up with the
datasheet (VDDANA), but the value the header file defines

#define DAC_CTRLB_REFSEL_Msk

(Ox1) does. This is probably for compatibility reasons with
related boards — as long as we’ve double-checked that we
match the datasheet, we can use this

(@x3u << DAC_CTRLB_REFSEL_Pos)

111 #define DAC_CTRLB_REFSEL(value) ((DAC_CTRLB_REFSEL_Msk & ((value) << DAC_CTRLB_REFSEL_Pos)))
112 #define DAC_CTRLB_REFSEL_INT1V Val Ox0u /**< \brief (DAC_CTRLB) Internal 1.0V reference */
113 #define DAC_CTRLB_REFSEL_AVCC Vval oxlu /**< \brief (DAC_CTRLB) AvCC */

114 #define DAC_CTRLB_REFSEL_VREFP Val ox2u /**< \brief (DAC_CTRLB) External reference */

115 #define DAC_CTRLB_REFSEL_INT1V (DAC_CTRLB_REFSEL_INT1V Val << DAC_CTRLB_REFSEL_Pos)

116 #define DAC_CTRLB_REFSEL_AVCC (DAC_CTRLB_REFSEL_AVCC Val << DAC_CTRLB_REFSEL_Pos)

117 #define DAC_CTRLB_REFSEL_VREFP (DAC_CTRLB_REFSEL_VREFP_Vval << DAC_CTRLB_REFSEL_Pos)

/**< \brief (DAC_CTRLA) Software Reset */

/**< \brief (DAC_CTRLA) Enable */

/**< \brief (DAC_CTRLA) Run in Standby */

72 #define DAC_CTRLA_SWRST_Pos)

73 #define DAC_CTRLA_SWRST (@x1u << DAC_CTRLA_SWRST_Pos)

74 #define DAC_CTRLA_ENABLE_Pos 1

75 #define DAC_CTRLA ENABLE (@x1u << DAC_CTRLA ENABLE Pos)
76 #define DAC_CTRLA_RUNSTDBY_Pos 2

77 #define DAC_CTRLA RUNSTDBY (@x1u << DAC_CTRLA_RUNSTDBY_Pos)
78 #define DAC_CTRLA MASK ex07Uu

/**< \brief (DAC_CTRLA) MASK Register */

setup function

void setup() {

// ** Configure PORT **

// Reset config bits for PA02 and enable MUX: TODO (see example in lab 3)
// Select MUX function B for PAQ2

PORT->Group [PORTA] .PMUX[1] .reg = PORT PMUX PMUXE B;

// ** Configure GCLK DAC **
// TODO (see example in lab 3)

// ** Configure DAC **

// Select internal voltage reference
DAC->CTRLB.reg = DAC_CTRLB_REFSEL AVCC;
// Enable DAC
DAC->CTRLA.reg

DAC_CTRLA_ENABLE;
// We could have also done this using bit manipulation, e.g.:

// DAC->CTRLA.reg = (1 << 1); // Move value 1 to bit position 1

‘ loop function: DAC operation

void loop() {
// Output 2.5V on DAC pin

// Compute DAC value for 2.5 V

// (write 25/33 instead of 2.5/3.3 to avoid floating point division)
unsigned int dac_val = 1023 * 25 / 33;

// Write to DAC DATA register

DAC->DATA.reg = dac_val;

