
Automating 
safety property 
verification, intro 
to liveness



Stateful invariants
For a transition system S, Create a safety monitor FSM  called M 
where:
⬢ inputs of M are a subset of the inputs and outputs of system 
⬢ Some subset E of the states of M are designated as “error” states
⬢ The behavior of M is designed such that if the sequence of inputs to M 

leads M to an error state in E, this is an invariant violation

Compose M and S. The invariant becomes that any state in E is not 
reachable
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“
What similarities do you see 
between the safety monitor 

FSM definition and the 
runtime monitor you wrote in 

lab 8?
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on/off button
current_temp
desired_temp
mils

status_msg
AC LED



Open and closed systems
To automate invariant verification, we need to 
work with a closed system

[Lee/Seshia, chapter 15] 5



Automated verification of invariants
Create a closed system by composing model of 
the system with model of the environment

[Lee/Seshia, chapter 15] 6



Closed AC model
System: AC FSM

Environment:

⬢ Time
⬢ Button
⬢ Current temp
⬢ Desired temp
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Note: for the logics/computation models we are talking about here, we 
are using discrete systems (but not necessarily deterministic!)



Very simplified closed discrete, 
non-deterministic AC model - 
current temp and time
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2. AC_ON
true / mils := mils + 1

true/ 
current_temp := 
current_temp - 1



“
What do we lose when 
switching to a discrete 

model?
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Very simplified closed discrete, 
non-deterministic AC model - 
on/off button
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2. AC_ON

1. SYS_OFF

sys_switch_toggled ∧
(mils - time_of_sys_toggle) ≥ 1000 /
time_of_sys_toggle = mils



Very simplified closed discrete, 
non-deterministic AC model - 
desired temp (option 1)
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2. AC_ON 2. AC_OFF

mils - 
time_of_ac_toggle >= 
2000



Very simplified closed discrete, 
non-deterministic AC model - 
desired temp (options 2 and 3)
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2. AC_ON

mils - time_of_ac_toggle >= 2000
^ curr_temp < des_temp

true /
des_temp := 55

true /
des_temp := 56

true /
des_temp := …

2. AC_ON

des_temp < 86 /
des_temp := 
des_temp + 1

des_temp > 54 /
des_temp := 
des_temp - 1



Automated reachability analysis
A property p of a transition system* S is an invariant of S if 
every reachable state of S satisfies p

How would you automatically determine the set of reachable 
states?

Assume a system of finite states

(Verification for a system of infinite states is undecidable)
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Depth-first search

[Lee/Seshia, chapter 15] 14



DFS board example for AC
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“
How would you modify the 

DFS algorithm to either 
produce a “YES” or a 
counterexample for a 

property p?
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Reference for DFS question
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Safety requirements vs liveness 
requirements
Safety: nothing bad ever happens

Liveness: something good eventually happens

Means system is functioning as intended

System requirements are often liveness 
requirements
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“
What are some liveness 

requirements for the AC?
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“
How would you monitor that 

a liveness requirement is 
fulfilled?
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Saying something eventually happens is the 
same thing as saying that it is not the case that it 
always doesn’t happen
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Verifying some liveness properties



Assume you have some execution trace

LTL operators are propositional logic operators PLUS:

G (globally/always)

F (eventually/finally)

X (next state)

U (until)
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Linear Temporal Logic (LTL)
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FG vs G, GF vs F, FG vs GF
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