
Automating
safety property
verification, intro
to liveness

Stateful invariants
For a transition system S, Create a safety monitor FSM called M
where:
⬢ inputs of M are a subset of the inputs and outputs of system
⬢ Some subset E of the states of M are designated as “error” states
⬢ The behavior of M is designed such that if the sequence of inputs to M

leads M to an error state in E, this is an invariant violation

Compose M and S. The invariant becomes that any state in E is not
reachable

2

“
What similarities do you see
between the safety monitor

FSM definition and the
runtime monitor you wrote in

lab 8?

3

on/off button
current_temp
desired_temp
mils

status_msg
AC LED

Open and closed systems
To automate invariant verification, we need to
work with a closed system

[Lee/Seshia, chapter 15] 5

Automated verification of invariants
Create a closed system by composing model of
the system with model of the environment

[Lee/Seshia, chapter 15] 6

Closed AC model
System: AC FSM

Environment:

⬢ Time
⬢ Button
⬢ Current temp
⬢ Desired temp

7

Note: for the logics/computation models we are talking about here, we
are using discrete systems (but not necessarily deterministic!)

Very simplified closed discrete,
non-deterministic AC model -
current temp and time

8

2. AC_ON
true / mils := mils + 1

true/
current_temp :=
current_temp - 1

“
What do we lose when
switching to a discrete

model?

9

Very simplified closed discrete,
non-deterministic AC model -
on/off button

10

2. AC_ON

1. SYS_OFF

sys_switch_toggled ∧
(mils - time_of_sys_toggle) ≥ 1000 /
time_of_sys_toggle = mils

Very simplified closed discrete,
non-deterministic AC model -
desired temp (option 1)

11

2. AC_ON 2. AC_OFF

mils -
time_of_ac_toggle >=
2000

Very simplified closed discrete,
non-deterministic AC model -
desired temp (options 2 and 3)

12

2. AC_ON

mils - time_of_ac_toggle >= 2000
^ curr_temp < des_temp

true /
des_temp := 55

true /
des_temp := 56

true /
des_temp := …

2. AC_ON

des_temp < 86 /
des_temp :=
des_temp + 1

des_temp > 54 /
des_temp :=
des_temp - 1

Automated reachability analysis
A property p of a transition system* S is an invariant of S if
every reachable state of S satisfies p

How would you automatically determine the set of reachable
states?

Assume a system of finite states

(Verification for a system of infinite states is undecidable)

13

Depth-first search

[Lee/Seshia, chapter 15] 14

DFS board example for AC

15

“
How would you modify the

DFS algorithm to either
produce a “YES” or a
counterexample for a

property p?

16

Reference for DFS question

17

Safety requirements vs liveness
requirements
Safety: nothing bad ever happens

Liveness: something good eventually happens

Means system is functioning as intended

System requirements are often liveness
requirements

18

“
What are some liveness

requirements for the AC?

19

“
How would you monitor that

a liveness requirement is
fulfilled?

20

Saying something eventually happens is the
same thing as saying that it is not the case that it
always doesn’t happen

21

Verifying some liveness properties

Assume you have some execution trace

LTL operators are propositional logic operators PLUS:

G (globally/always)

F (eventually/finally)

X (next state)

U (until)

22

Linear Temporal Logic (LTL)

e

d

Ge

Fe

Xe

dUe

FG vs G, GF vs F, FG vs GF

23

23Ge

Fe

GFe

FGe

