Automating
safety property
verification, intro
to liveness

‘ Stateful invariants

For a transition system S, Create a safety monitor FSM called M
where:

inputs of M are a subset of the inputs and outputs of system

Some subset E of the states of M are designated as “error” states

The behavior of Mis designed such that if the sequence of inputs to M
leads M to an error state in E, this is an invariant violation

Compose M and S. The invariant becomes that any state in E is not
reachable

0

What similarities do you see
between the safety monitor
FSM definition and the
runtime monitor you wrote in
lab 87

on/off button
current_temp
desired_temp
mils

3.SYS_OFF

|/

status_msg
AC LED

4. VIOLATION

‘ Open and closed systems

To automate invariant verification, we need to
work with a closed system

in out out
—> So ’_ Sc >—
(a) Open system (b) Closed system

Figure 15.1: Open and closed systems.

[Lee/Seshia, chapter 15]

‘ Automated verification of invariants

Create a closed system by composing model of
the system with model of the environment

Property
P
System A 4 _x. YES
> [proof]
. y M
Environment| | COmPpose > Verify
E >
— NO

counterexample

Figure 15.2: Formal verification procedure.
[Lee/Seshia, chapter 15]

‘ Closed AC model 3 e
- 2
System: AC FSM [@

Environment: P I
Time

‘ temp_out = temp;
e Button _
e Current temp

e Desired temp

COOLING
du:

u:
temp_dot = -0.001;
temp_out = temp;

true/
current_temp =
current_temp - 1

-

2. AC_ON

Very simplified closed discrete,
non-deterministic AC model -
current temp and time

true / mils := mils + 1

0

What do we lose when
switching to a discrete
model?

Very simplified closed discrete,
non-deterministic AC model -

on/off button

sys—switch—teggled—#

-

1. SYS_OFF

\

(milg - time:of_sys_toggle) = 1000/

time_of sys toggle = mils

4 I
2. AC_ON
\ J

10

Very simplified closed discrete,
non-deterministic AC model -
desired temp (option 1)

a I
2. AC_ON
\ J

mils -
time_of_ac_toggle >=
2000

-

~ 2.AC OFF

\

1

Very simplified closed discrete,
non-deterministic AC model -
desired temp (options 2 and 3)

W mils - time_of_ac_toggle >= 2000
~ curr_temp < des_temp
2.AC_ON -
true / U 2. AC_ON W —
des_temp =55 true / J
des_temp = ..

true /
~ des_temp <86/ des_temp > 54 /
des_temp =56 des_temp := () () des_temp =

des_temp +1 des_temp - 1 5

‘ Automated reachability analysis

A property p of a transition system™ Sis an invariant of S if
every reachable state of S satisfies p

How would you automatically determine the set of reachable
states?

Assume a system of finite states

(Verification for a system of infinite states is undecidable)

13

‘ Depth-first search

Input : Initial state sy and transition relation § for closed finite-state
system M
Output: Set R of reachable states of M

1 Initialize: Stack ¥ to contain a single state so; Current set of reached
states R := {sg}.

2 DFS Search() {
3 while Stack ¥ is not empty do
4 Pop the state s at the top of £
5 Compute §(s), the set of all states reachable from s in one
transition
6 for each s’ € §(s) do
7 if s € R then
8 R:=RU {s'}
9 Push s’ onto ¥
10 end
11 end
12 end
13}
[Lee/Seshia, chapter 15] A;I;gr(:;ithm 15.1: Computing the reachable state set by depth-first explicit-state

14

‘ DFS board example for AC

15

0

How would you modify the
DFS algorithm to either
produce a “YES" or a
counterexample for a

property p?

‘ Reference for DFS question

Input : Initial state sy and transition relation J for closed finite-state
system M
Output: Set R of reachable states of M

1 Initialize: Srack X to contain a single state sq; Current set of reached
states R := {sg}.

2 DFS Search() { Property
3 while Stack ¥ is not empty do P
4 Pop the state s at the top of X System . YES
5 Compute §(s), the set of all states reachable from s in one S & r [proof]
BAEsa o - N Verify
6 for each s’ € §(s) do Environment pe ”
7 if s’ € R then E > i
5 0]
8 R:=RU({s'} counterexample
9 Push s’ onto ¥
10 end i e
it | wna Figure 15.2: Formal verification procedure.
12 end
13}
Algorithm 15.1: Computing the reachable state set by depth-first explicit-state
search.

17

Safety requirements vs liveness

requirements
Safety: nothing bad ever happens

Liveness: something good eventually happens
Means system is functioning as intended

System requirements are often liveness
requirements

18

0

What are some liveness
requirements for the AC?

0

How would you monitor that
a liveness requirement is

fulfilled?

‘ Verifying some liveness properties

Saying something eventually happens is the
same thing as saying that it is not the case that it
always doesn’t happen

21

‘ Linear Temporal Logic (LTL)

Assume you have some execution trace

LTL operators are propositional logic operators PLUS:

G (globally/always) ¥ S0 0-0-0
. d D NN\ /N D

F (eventually/finally) /A /A N A/
X (next state) ce (O~)~
Fe ()~)~ O~~~
dUeD D D D D D

22

‘ FGvs G, GF vs F, FG vs GF

23

