Automating safety property verification, intro to liveness

Stateful invariants

For a transition system *S*, Create a *safety monitor FSM* called *M* where:

- inputs of *M* are a subset of the inputs and outputs of system
- Some subset *E* of the states of *M* are designated as "error" states
- The behavior of *M* is designed such that if the sequence of inputs to *M* leads *M* to an error state in *E*, this is an invariant violation

Compose *M* and *S*. The invariant becomes that any state in *E* is not reachable

What similarities do you see between the safety monitor FSM definition and the runtime monitor you wrote in lab 8?

Open and closed systems

To automate invariant verification, we need to work with a closed system

Figure 15.1: Open and closed systems.

Automated verification of invariants

Create a closed system by composing model of the system with model of the environment

Figure 15.2: Formal verification procedure.

[Lee/Seshia, chapter 15]

System: AC FSM

Environment:

- Time
- Button
- Current temp
- Desired temp

Note: for the logics/computation models we are talking about here, we are using *discrete* systems (but not necessarily deterministic!)

Very simplified closed *discrete, non-deterministic* AC model current temp and time

What do we lose when switching to a discrete model?

Very simplified closed *discrete, non-deterministic* AC model desired temp (option 1)

Automated reachability analysis

A property *p* of a transition system* *S* is an *invariant* of *S* if every **reachable** state of *S* satisfies *p*

How would you automatically determine the set of reachable states?

Assume a system of finite states

(Verification for a system of infinite states is undecidable)

	Input : Initial state s_0 and transition relation δ for closed finite-state system M
	Output: Set R of reachable states of M
1	Initialize: Stack Σ to contain a single state s_0 ; Current set of reached states $R := \{s_0\}$.
2	DFS_Search() {
3	while Stack Σ is not empty do
4	Pop the state s at the top of Σ
5	Compute $\delta(s)$, the set of all states reachable from s in one transition
6	for each $s' \in \delta(s)$ do
7	if $s' \notin R$ then
8	$R := R \cup \{s'\}$
9	Push s' onto Σ
10	end
11	end
12	end
13	}

[Lee/Seshia, chapter 15]

Algorithm 15.1: Computing the reachable state set by depth-first explicit-state search.

How would you modify the DFS algorithm to either produce a "YES" or a counterexample for a property p?

Reference for DFS question

- **Input** : Initial state s_0 and transition relation δ for closed finite-state system M**Output**: Set R of reachable states of M
- **1 Initialize:** Stack Σ to contain a single state s_0 ; Current set of reached states $R := \{s_0\}$.
- 2 DFS_Search() {
- 3 while Stack Σ is not empty do
- 4 Pop the state s at the top of Σ
- 5 Compute $\delta(s)$, the set of all states reachable from s in one transition

```
6 for each s' \in \delta(s) do
```

```
7if s' \notin R then8| R := R \cup \{s'\}9| Push s' onto \Sigma10end11end
```

12 end 13 }

Algorithm 15.1: Computing the reachable state set by depth-first explicit-state search.

Figure 15.2: Formal verification procedure.

Safety requirements vs liveness requirements

Safety: nothing bad ever happens

Liveness: something good *eventually* happens

Means system is functioning as intended

System requirements are often liveness requirements

What are some liveness requirements for the AC?

How would you **monitor** that a liveness requirement is fulfilled?

Verifying some liveness properties

Saying something *eventually* happens is the same thing as saying that it is *not* the case that it always *doesn't* happen

Linear Temporal Logic (LTL)

Assume you have some execution trace

- LTL operators are propositional logic operators PLUS:
- G (globally/always)
- F (eventually/finally)
- X (next state)

U (until)

