
Verification and
invariants

“
What are some limitations of

software testing?

2

Safety properties and invariants
Invariant: some computable property of a system
that always holds (more precise definition later)

Safety property (or safety requirement): assertion
that nothing bad ever happens

3

“
How are invariants and safety

properties related?

4

Define “bad thing” computably

Invariant: bad thing is not true

Example for AC from lab 8
1) There is no more than 290 ms of delay between status_message messages.
→ “bad thing”: two consecutive status_message messages come more than
290 ms apart
→ invariant: bad thing is not true
→ your monitor checked if the invariant always held

Safety properties can be
expressed as invariants

5

Another example from lab 8
8) If the system is on and the control knob hasn’t changed for
290 ms, the desired temperature as sent by status message
obeys the formula 5400 + 25 * (control knob reading) / 8 with
an error of at most 3 degrees F (300 centidegrees).

What is the “bad thing?”

6

Working with invariants
⬢ Runtime monitoring on a deployed system
⬢ Testing
⬢ ...formally proving?

7

Runtime monitoring on a
deployed system

Normal/safe
operation

Failure detected/failsafe

Un
sa

fe
 o

pe
ra

tio
n

Un
sa

fe
 o

pe
ra

tio
n

Unsafe operation

Unsafe operation

Unsafe operation

Failure detected/failsafe

Monitor to detect this

8

Invariants for testing
Our basic understanding of testing so far
has been largely transactional:

Give input, observe that output matches
what is expected

Are embedded systems transactional?
Robot asked to navigate to a goal point

Image source
9

https://navigation.ros.org/getting_started/index.html

Formalizing invariants
...back to FSMs!

Board discussion:

Reachability

Traces

10

Propositional logic
Composed of terms (“a”, “b”, “c”), where a term can be:
p(x), q(x), r(x,y): propositions (evaluate to either true or false)

x > 0
x + y = 2
robot x has not hit obstacle y

a ∧ b : a and b (true if term a is true and term b is true)

a ∨ b: a or b (true if term a is true or term b is true or both)

¬a: not a (true if term a is false)

a ⇒ b: a implies b (true if term b is true or if term a is false)
11

Formal definition of an invariant
A property p of a transition system* S is an
invariant of S if every reachable state of S
satisfies p

*For our class, think of a transition system as an FSM

[Alur, chapter 3]

12

Inductive invariants
A property p of a transition system S is an inductive
invariant of S if:

1. The initial state s satisfies p, and
2. If a state s satisfies p, and (s, t) is a transition, then the

state t also satisfies p
(Board discussion: Prove (x >= 0 ∧ y > 0) ∨ (x > 0 ∧ y >=
0)

13

Proving non-inductive invariants
To establish that a property p is an invariant of
the transition system S, find a property q that:

1. q is an inductive invariant of S, and
2. the property q implies the property p (that is,

a state satisfying q is guaranteed to satisfy p)

(Board discussion: Prove B => x > 0 ^ y > 0)

14

How would you deal with this
invariant?

10) If the system is on and the control knob hasn’t changed
for 290 ms, the desired temperature as sent by status
message obeys the formula 5400 + 25 * (control knob
reading) / 8 with an error of at most 3 degrees F (300
centidegrees).

15

Stateful invariants
For a transition system S, Create a safety monitor FSM called M
where:
⬢ inputs of M are a subset of the inputs and outputs of S
⬢ Some subset E of the states of M are designated as “error” states
⬢ The behavior of M is designed such that if the sequence of inputs to M

leads M to an error state in E, this is an invariant violation

Compose M and S. The invariant becomes that any state in E is not
reachable

16

“
What similarities do you see
between the safety monitor

FSM definition and the
runtime monitor you wrote in

lab 8?

17

