
# 25: Safety Standards

#### **Milestone demo reminders**

- Just one slide (project description and goals)
- Brief (5 min) demo
- Half of the groups on Monday, half on Wednesday
  - Randomly assigned, will announce by end of today
- We will ask for your FSM and slide so that it can be peer-reviewed by others

### **Review: escalation of safety**



## Safety standards

Guide how to engineer for safety How to assess risk What SW processes to use What code standards to follow How much/what kinds of testing How much formal verification

Different standards for different domains

Progression for automotive: MISRA -> IEC 61508  $\rightarrow$  ISO 26262  $\rightarrow$  SOTIF/ISO21448 ( $\rightarrow$ UL 4600?)

#### **Risk Matrices**

#### A way of reasoning about the amount of risk of a hazardous event

| IEC 61508                         |                                     | Consequence           |                     |                    |                         |  |  |  |
|-----------------------------------|-------------------------------------|-----------------------|---------------------|--------------------|-------------------------|--|--|--|
| Likelihood<br>(failures per year) |                                     | Catastrophic          | Critical            | Marginal           | Negligible              |  |  |  |
|                                   |                                     | Multiple loss of life | Single loss of life | Major injuries     | Minor injuries at worst |  |  |  |
| Frequent > 10 <sup>-3</sup>       |                                     |                       |                     |                    | II                      |  |  |  |
| Probable                          | 10 <sup>-3</sup> - 10 <sup>-4</sup> | Unacceptable          |                     |                    | ш                       |  |  |  |
| Occasional                        | 10 <sup>-4</sup> -10 <sup>-5</sup>  | I                     | Undesirable         |                    |                         |  |  |  |
| Remote                            | 10 <sup>-5</sup> -10 <sup>-6</sup>  | Ш                     | Tolerab             | le (cost tradeoff) | IV                      |  |  |  |
| Improbable                        | 10 <sup>-6</sup> -10 <sup>-7</sup>  | III                   | h                   |                    |                         |  |  |  |
| Incredible                        | < 10 <sup>-7</sup>                  | III                   | IV                  |                    | eptable                 |  |  |  |

- Tell your neighbor about the cautionary tale you researched (Boeing 737, Stuxnet, Ariane 5, SmartHue Lightbulbs, Radiology Password, ConnMan)
- Where would you put this system on a risk matrix (what was the
- consequence/potential consequence? What *should* the probability be?)

| IEC 61508                   |                                     | Consequence           |                     |                            |          |                         |  |  |
|-----------------------------|-------------------------------------|-----------------------|---------------------|----------------------------|----------|-------------------------|--|--|
| Likeli                      | hood                                | Catastrophic Critical |                     | Marginal<br>Major injuries |          | Negligible              |  |  |
| (failures per year)         |                                     | Multiple loss of life | Single loss of life |                            |          | Minor injuries at worst |  |  |
| Frequent > 10 <sup>-3</sup> |                                     |                       |                     |                            | 1        | Ш                       |  |  |
| Probable                    | 10 <sup>-3</sup> - 10 <sup>-4</sup> | Unacceptable          |                     |                            | П        |                         |  |  |
| Occasional                  | 10 <sup>-4</sup> -10 <sup>-5</sup>  | 1                     | Undesirable         |                            |          | III                     |  |  |
| Remote                      | 10 <sup>-5</sup> -10 <sup>-6</sup>  | II                    | Tolerat             | ole (cost t                | radeoff) | IV                      |  |  |
| Improbable                  | 10 <sup>-6</sup> -10 <sup>-7</sup>  | III                   | 1                   |                            |          | ntabla                  |  |  |
| Incredible                  | < 10 <sup>-7</sup>                  | III                   | IV                  |                            | IV Acce  | ptable                  |  |  |

The burns suffered by Patricia Anderson and her family when their elderly Chevrolet Malibu was hit by another car on Christmas eve in 1993 were real and horrific. The car, whose fuel tank General Motors had put close to the bumper, exploded, leaving three passengers with burns over more than 60% of their bodies. So when a Californian jury awarded damages against GM, it was not the degree of harm that attracted startled comment, but the scale of the award—an astonishing \$4.9 billion.

The firm was

not allowed to reveal to the jury that the driver of the other car was drunk, or to talk about the good safety record of the Malibu. Instead the case centred on a cost-benefit analysis written in 1973 by a GM engineer. After assigning a \$200,000 value to a human life, Edward Ivey estimated that it would cost \$2.40 per car to settle lawsuits resulting from any deaths, as compared with \$8.59 to fix the fuel-tank problem.

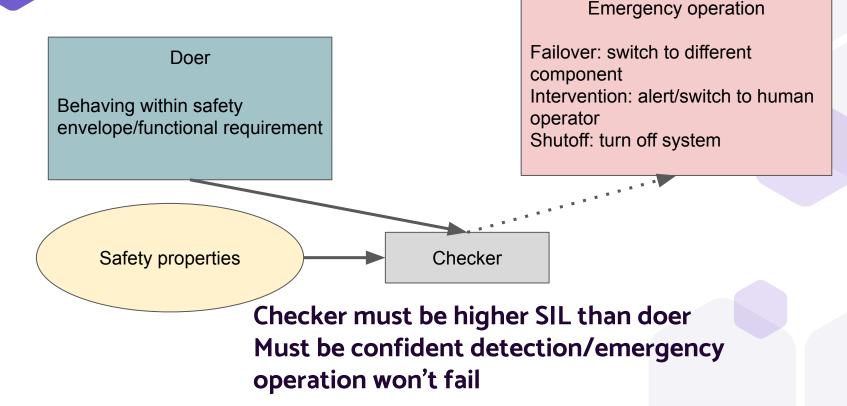
Article source: Economist, July 17 1999

## Safety Integrity Levels

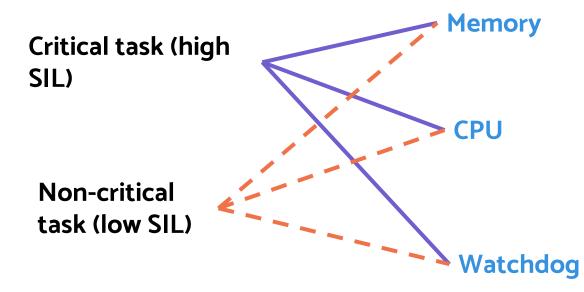
A (standards-based) target to attain for each safety function Named SIL levels (IEC 61508/ISO 26262 has SIL-1, SIL-2, SIL-3, SIL-4) SIL-4 means least acceptable failures (in ISO26262, < 10<sup>-9</sup> per hour)

Each SIL may require:

Maximum accepted risk of failure


Minimum accepted software quality

Minimum accepted redundancy architecture


All hardware to be certified at or above that level

Analysis and mitigation techniques

## **Doer/checker models**



# Mixed-SIL Interference



#### **Different standards for different domains**

| Domain                                   | Domain-Specific Safety Levels |             |          |              |        |            |            |  |
|------------------------------------------|-------------------------------|-------------|----------|--------------|--------|------------|------------|--|
| Automotive (ISO 26262)                   | QM                            | ASI         | L-A      | ASIL-B       | ASIL-C | ASIL-D     | -          |  |
| General (IEC 61508)                      | -                             | SIL         | 1        | SIL-2        |        | SIL-3      | SIL-4      |  |
| Railway (CENELEC 50126/128/129)          | -                             | SIL         | <b>1</b> | SIL-2        |        | SIL-3      | SIL-4      |  |
| Space (ECSS-Q-ST-80)                     | Category E                    | Categ       | ory D    | D Category C |        | Category B | Category A |  |
| Aviation: airborne (ED-12/DO-178/DO-254) | DAL-E                         | DAL         | D        | DAL-C        |        | DAL-B      | DAL-A      |  |
| Aviation: ground (ED-109/DO-278)         | AL6                           | AL5 AL4 AL3 |          | AL3          | AL2    | AL1        |            |  |
| Medical (IEC 62304)                      | Class A                       | Class B     |          | lass B       |        | Class C    | -          |  |
| Household (IEC 60730)                    | Class A                       | Cla         |          | lass B       |        | Class C    | -          |  |
| Machinery (ISO 13849)                    | PL a                          | PL b        | PLc      | P            | Ld     | PLe        | -          |  |

Approximate cross-domain mapping of ASIL

#### **Standards inform practice** ISO 26262

| Table  | 3: 7.4.3                                                           | ASIL |    |    |    |  |
|--------|--------------------------------------------------------------------|------|----|----|----|--|
| Princi | ples for software architectural design                             | A    | В  | С  | D  |  |
| 1a     | Hierarchical structure of software components                      | ++   | ++ | ++ | ++ |  |
| 1b     | Restricted size of software components <sup>a</sup>                | ++   | ++ | ++ | ++ |  |
| 1c     | Restricted size of interfaces °                                    | +    | +  | +  | +  |  |
| 1d     | High cohesion within each software component <sup>b</sup>          | +    | ++ | ++ | ++ |  |
| 1e     | Restricted coupling between software components <sup>a, b, c</sup> | +    | ++ | ++ | ++ |  |
| 1f     | Appropriate scheduling properties                                  | ++   | ++ | ++ | ++ |  |
| 1g     | Restricted use of interrupts <sup>a, d</sup>                       | +    | +  | +  | ++ |  |

| Table 4: 7.4.14 |                                                                | ASIL |    |    |      |  |
|-----------------|----------------------------------------------------------------|------|----|----|------|--|
| Mech            | anisms for error detection at the software architectural level | A    | В  | С  | D    |  |
| 1a              | Range checks of input and output data                          | ++   | ++ | ++ | ++   |  |
| 1b              | Plausibility check <sup>a</sup>                                | +    | +  | +  | ++   |  |
| 1c              | Detection of data errors <sup>a</sup>                          | +    | +  | +  | +    |  |
| 1d              | External monitoring facility <sup>c</sup>                      | 0    | +  | +  | ++   |  |
| 1e              | Control flow monitoring                                        | 0    | +  | ++ | ++   |  |
| 1f              | Diverse software design                                        | 0    | 0  | +  | ++ 1 |  |

<u>Image source</u>

#### **Use of standards** FPGAs (IEC 61508) vs. Airplanes (DO-178C)

Microchip functional safety page FAA software approval guidelines NHSTA study of safety standards

| Serial<br>Number | Objectives                                                         | Software<br>Level-A | Software<br>Level-B | Software<br>Level-C | Software<br>Level-D |
|------------------|--------------------------------------------------------------------|---------------------|---------------------|---------------------|---------------------|
| 1                | Software Code complies with low-<br>level requirements.            | Applicable          | Applicable          | Applicable          | Not Applicable      |
| 2                | Source Code complies with<br>software architecture.                | Applicable          | Applicable          | Applicable          | Not Applicable      |
| 3                | Source Code is Verifiable.                                         | Applicable          | Applicable          | Not Applicable      | Not Applicable      |
| 4                | Source Code conforms to<br>standards.                              | Applicable          | Applicable          | Applicable          | Not Applicable      |
| 5                | Source Code is traceable to low-<br>level requirements.            | Applicable          | Applicable          | Applicable          | Not Applicable      |
| 6                | Source Code is accurate and<br>consistent.                         | Applicable          | Applicable          | Applicable          | Not Applicable      |
| 7                | Output of software integration<br>process is complete and correct. | Applicable          | Applicable          | Applicable          | Not Applicable      |
| 8                | Parameter Data Item File is<br>correct and complete.               | Applicable          | Applicable          | Applicable          | Applicable          |
| 9                | Verification of Parameter Data<br>Item File is achieved.           | Applicable          | Applicable          | Applicable          | Not Applicable      |

DO 178C Table A-5: Verification of Outputs of Software Coding and Integration Process

#### Image source

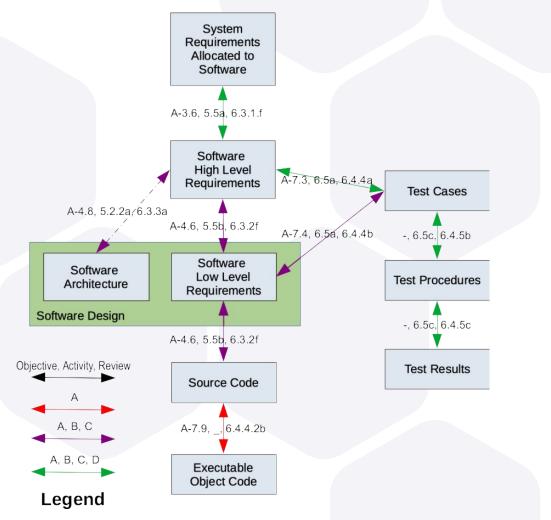



Image source



Should cars be engineered to the same safety standards as planes?

Same rigor?Legal requirement?