
Safety, privacy, 
and security



Escalation of safety

2

Avoid faults

Detect faults

Failover

Intervention



Avoiding scooter failure

3

Pre-emptive audit of the user experience
Engineer a graceful shutdown
Do pre-emptive failure analysis
Hardware redundancy



Code style
Style guides (MISRA C)

Spaghetti code

Special topics: global variables, floating point

4

https://rikkeisoft.github.io/sonar-rules/objc.html


“
Why would global variables 

be considered harmful?

5



“
Why would floating point be 
considered harmful (beyond 

floating point error)?

6



Which would you rather test/maintain?

7Image source

http://www.mccabe.com/iq_developers.htm


Spaghetti Code
Code whose structure is impossible to untangle

MCC (McCabe’s cyclomatic complexity)
Measure of branching logic in code

Easy way to compute: #1 of closed loops + 1

Some standards impose limits on MCC

8Image source

https://en.wikipedia.org/wiki/Cyclomatic_complexity


“
What, besides coding, should 
be part of a safety-oriented 

project culture?

9



10



Hazop
Hazard and operability 
analysis

Break system into nodes

Examine wording of system 
requirements to reason 
about potential failures

Brake within 2s -> what 
happens if we brake after 
2s?

11

Reasoning about hazards/possible failures
FMEA
Failure mode and effects 
analysis

Worksheets to reason about 
potential failures from 
bottom-up

Causes, effects, 
probabilities, etc

Fault tree analysis
Use boolean logic to 
determine what low-level 
failures could cause an 
anticipated failure

Image source

https://en.wikipedia.org/wiki/Fault_tree_analysis


Escalation of safety

12

Avoid faults

Detect faults

Failover

Intervention



Single points of failure
A single point of failure happens when a failure of one 
component renders the entire system unsafe

Avoid single points of failure by:

⬢ Software: doer/checker with failover
⬢ Hardware: failure detection with redundancy

Components must truly be separate for true redundancy
Hidden sources of correlation: shared libraries, shared power, 
shared connections, shared defective requirements…. 13



14

Doer/checker models

Doer

Behaving within safety 
envelope/functional requirement

Checker

Emergency operation

Failover: switch to different 
component
Intervention: alert/switch to human 
operator
Shutoff: turn off system

Safety properties

You will see runtime 
monitoring in lab!



Redundancy

15

Entire system fails

System can still operate 
in reduced capacity



16


