
18: More testing
and coverage

Coverage
Notion of how completely a piece of code has been tested
with a particular set of tests, with respect to a specific metric

Examples:

⬢ What % of requirements have been tested?
⬢ What % of lines of code have been tested?

100% coverage does not mean 100% tested, but it’s a start
to assess testing thoroughness

2

White box testing guided by coverage
Branch (aka decision) - for every branch (e.g. if-statement), is
there at least one test case that evaluates that branch to true and
one that evaluates it to false?

Condition - like branch coverage, but looking at conditions
within branches (e.g. looking at x > 0 and y == 2 separately rather
than just x > 0 || y == 2)

Path - is there a test case that exercises every unique path
through the code (as opposed to considering each branch
independently) 3

Branch coverage
if (x == 3 && y < 0) {
 // do something;
} else {
 // do something else
}

q = x + z;

if (q < y) {
 if (x == z) {
 // do another thing
 }
 // do a fourth thing
}

4

(x, y, z) x==3 && y < 0 x + z < y x == z

(3, -1, 3) true false n/a

(0, 0, 0) false false n/a

(3, -1, -5) true true false

(0, 5, 0) false true true

Condition coverage
if (x == 3 && y < 0) {
 // do something;
} else {
 // do something else
}

q = x + z;

if (q < y) {
 if (x == z) {
 // do another thing
 }
}

5

x==3 y < 0 x + z < y x == z

(3, -1, 0) true true false n/a

(-4, -1, -4) false true true true

(0, -1, -99) false true true false

(0, 0, 0) false false false n/a

Path coverage
if (x == 3 && y < 0) {
 // do something;
} else {
 // do something else
}

q = x + z;

if (q < y) {
 if (x == z) {
 // do another thing
 }
}

6

x == 3 && y < 0

q < y

q = x + z

something something
else

x == z

another
thing

start

end

7

x == 3 && y < 0

q < y

q = x + z

something something
else

x == z

another
thing

start

end

Six paths through the
flowchart, but one is
impossible according to
the data

Modified Condition/Decision
Coverage (MC/DC)
A more comprehensive coverage metric required by some
software safety standards

⬢ Each entry and exit point is invoked
⬢ Each decision takes every possible outcome <- branch

coverage
⬢ Each condition in a decision takes every possible outcome <-

condition coverage
⬢ Each condition in a decision is shown to independently

affect the outcome of the decision 8

Each condition in a decision is shown to independently affect
the outcome of the decision
Pick values to hold all but one condition constant. Does changing the other
condition affect the outcome of the decision?

(x + y) == 3 && (y < 0 || x == 2)

9

x y x + y == 3 y < 0 x == 2 decision

4 -1 true true false true

3 0 true false false false

2 1 true false true true

0 -1 false true false false

Rest of the V

10

Product
requirements

Software
requirements

High
level/architecture
design

Integration testing

(System-level)
Software testing

Acceptance
testing

Integration testing
Use high level design (architecture diagram and sequence
diagrams) to test interfaces between modules/components

Test every interface (message format, correctness of values)

Test timing and sequence of messages sent

Test that unexpected messages are handled

Assume modules are performing individual duties correctly
(why?) and just test the communication between them

11

Sequence diagram test example
Scenario: check available funds at ATM

12

User ATM Bank
server

insert card

request PIN

enter PIN validate PIN

PIN valid
display options

request available funds

get available funds

send available funds
display available funds

Integration test
sends these
messages

But also keeps
track of
sequence/timing
of these

