
17: Testing

Your feedback from HW 9
Thank you for your encouraging and constructive
feedback!

Labs: more guidance on what you’re meant to be getting
out of them

Project: more guidance as to what is expected/how to get
started

2

Fill out the capstone form!
There is a post on Ed

3

Project proposals
Graded on completion (everyone got a 6/6)

Everyone got comments – some ask for changes
to be made before the milestone report/demo,
so please read them

4

Watchdog timers
⬢ Watchdogs are meant to detect system hangs

⬡ Pet them in specific places in the code
⬡ Successful pet = code still running = no watchdog reset

⬢ Actively detecting a failure and acting upon that failure should
not be handled by a watchdog

⬢ Also think about what it means for the system to reset: is
resetting safe behavior for your system?
⬡ Consider using early warning interrupt to warn user instead

5

Interrupts
Read the datasheet to find out how your components work

⬢ Some of the proposed “interrupt” ideas could only be
accomplished with polling
⬡ Does it make sense to interrupt on an analog signal (or a

“change” in something that’s not a digital electrical
signal?)

⬡ MKR1000 WiFi API does not expose an interrupt for http
request (have to poll)

6

Today

7

What is testing

8

Inputs or workload

Oracle
(“ground
truth”)

Program

Match??

Types of testing in the V model
Product
requirements

Software
requirements

High
level/architecture
design

Low level/module
design Unit testing

Integration testing

(System-level)
Software testing

Acceptance
testing

9

Why not just system level testing?

10

Co
st

 o
f f

ix
in

g
de

fe
ct

Requirements→Design→Implementation→Unit test→Integration test→System test→Acceptance test→Production

Unit testing
Check correctness of a module

One unit test = test a single function/method/path
Cannot test even single function calls exhaustively - consider
f(int x, int y, int z)

Best place to test edge case values

Both structural and functional testing

11

Functional vs. structural testing
Functional

“Black box” testing

No underlying knowledge of code

Example goal: exercise every requirement for
module, or every transition in FSM

Pro: help verify that the code actually matches
the spec, instead of the interpretation of the
spec

Pro: test assumptions on external code

Pro: sometimes testing is outsourced, and you
don’t have access to the code 12

Structural

“White box” testing

Knowledge of structure of code - guides testing

Example: exercise every line of code in function
call

Pro: identify code that is unreachable

Pro: identify a problematic line of code that may
have been missed in functional testing

Pro: identify spaghetti code

“
What are the tradeoffs

between black box and white
box testing?

13

How to unit test an implementation
based on FSM?

14

Want to test update_fsm’s implementation as-is
(without making changes to it)

1. STOPPED 2. MOVE_UP

button_UP_pressed ^ ㄱ(desk_height = max_height) /
motor_control := UP

ㄱbutton_UP_pressed v (desk_height = max_height) /
motor_control := STOPPED

state update_fsm(state current_state, bool button_UP_pressed, int desk_height) {
 state next_state;
 switch(current_state) {
 case STOPPED:
 // transition 1-2
 if (button_UP_pressed && desk_height != max_height) {
 next_state = MOVE_UP;
 set_motor_control(MOTOR_UP)
 } else {
 next_state = current_state
 }
 break; // important, or this goes to the next case
 case MOVE_UP:
 ...
 default:
 error(“wrong state!”);
 }
 return next_state;
}

Test for transition 1-2
end_state = update_fsm(STOPPED, true, 35)

assert(end_state == MOVE_UP)

assert(motor_movement == UP)

15

1. STOPPED 2. MOVE_UP

button_UP_pressed ^ ㄱ(desk_height = max_height) /
motor_control := UP

ㄱbutton_UP_pressed v (desk_height = max_height) /
motor_control := STOPPED

Mock out functions
// #define TESTING // uncomment to test

#ifndef TESTING // means TESTING is not defined

void set_motor_control(MotorEnum me) { ...normal operation … }

#else

MotorEnum motor_state;

void set_motor_control(MotorEnum me) { motor_state = me;}

#endif

16

Updated test of FSM transition 1-2
end_state = update_fsm(STOPPED, true, 35)

assert(end_state == MOVE_UP)

assert(motor_state == UP)

17

Is this structural or functional testing?

Edge case/unexpected inputs
What should this do?
update_fsm(STOPPED, true, 5000)

update_fsm(STOPPED, true, -2)

18

What about this?
update_fsm(DONT_MOVE, true, 40)

1. STOPPED 2. MOVE_UP

button_UP_pressed ^ ㄱ(desk_height = max_height) /
motor_control := UP

ㄱbutton_UP_pressed v (desk_height = max_height) /
motor_control := STOPPED

Coverage (a preview)
Notion of how completely a piece of code has been tested
with a particular set of tests, with respect to a specific metric

Examples:

⬢ What % of requirements have been tested?
⬢ What % of lines of code have been tested?

100% coverage does not mean 100% tested, but it’s a start
to assess testing thoroughness

19

Unit testing summary

20

Cheaper to catch defects here than at any other stage of
testing

Perform structural (white-box) or functional (black-box) testing
on modules/components/functions

