
15 & 16: Finite
state machines

Finite state machines
Low-level design for a module

Shows the change in state of a module
Contrast with flowchart, which just shows flow of
computation

At basic level, composed of:

States (one state is initial state)

Guards (predicates on inputs)

Actions (setting outputs) 2

Product
requirements

Software
requirements

High
level/architect
ure design

Low
level/module
design

Lee/Seshia chapter 3

Variants
Multiple ways to define statecharts/FSMs

Mealy vs. Moore, deterministic vs non-deterministic, etc

Extended FSMs: state variables (variables that are not
inputs or outputs) can appear in guards and actions

We will use deterministic, extended FSMs as
defined by Lee/Seshia

Will be useful when we talk about modeling

Translate well to coding 3

Product
requirements

Software
requirements

High
level/architect
ure design

Low
level/module
design

Adjustable-height desk FSM
Whiteboard

4

5

Note: this is not the complete FSM, it is what we had from lecture after
talking through some considerations.

Reminders
Fill out the parts ordering form!

Fill out the capstone form (if capstoning)

6

FSM conventions/rules
⬢ Define inputs, outputs, and variables

⬡ Define initial values for outputs/variables
⬢ Label each state with a number and a short, descriptive name

⬡ Label the start state
⬢ Guards for transitions out of a state:

⬡ should be mutually exclusive
⬡ should only be predicated on inputs and variables

⬢ Outputs on transitions should only set outputs and variables

7

Implementation of FSM

8

Product
requirements

Software
requirements

High
level/architect
ure design

Low
level/module
design

Implementation

1. STOPPED 2. MOVE_UP

button_UP_pressed ^ ㄱ(desk_height = max_height) /
motor_control := UP

typedef enum { STOPPED = 1, MOVE_UP = 2 } state;

state update_fsm(state current_state, bool button_UP_pressed, …) {
 state next_state;
 switch(current_state) {
 case STOPPED:
 // transition 1-2
 if (button_UP_pressed && desk_height != max_height) {
 next_state = MOVE_UP;
 set_motor_control(MOTOR_UP)
 } else {
 next_state = current_state
 }
 break; // important, or this goes to the next case
 case MOVE_UP:
 ...
 default:
 error(“wrong state!”);
 }
 return next_state;
}

ㄱbutton_UP_pressed v (desk_height = max_height) /
motor_control := STOPPED

“
When should update_fsm be

called?

state update_fsm(state current_state,
 bool button_UP_pressed, …)

9

Time-triggered:
computation to
(potentially) change state
happens every x ms,
regardless if inputs have
changed

10

Time-triggered vs. event-triggered design
Event-triggered:
computation to
(potentially) change state
happens when an input
changes

“
Pros/cons of time- vs.

event-triggered design?

11

Another FSM example: HW problem
Consider a variant of the thermostat of example 3.5. In this variant, there is only one temperature
threshold, and to avoid chattering the thermostat simply leaves the heat on or off for at least a fixed
amount of time. In the initial state, if the temperature is less than or equal to 20 degrees Celsius, it
turns the heater on, and leaves it on for at least 30 seconds. After that, if the temperature is greater
than 20 degrees, it turns the heater off and leaves it off for at least 2 minutes. It turns it on again
only if the temperature is less than or equal to 20 degrees

Design an FSM that behaves as described, assuming it reacts exactly once every 30 seconds.

12

13

“
How do we know that our

design has met our
requirements?

14

Traceability
Ensures that all requirements have been implemented
and tested

Often done using a traceability matrix
Example: each column is a requirement; each row is a transition

“x” in a cell if the transition helps meet the requirement

If a column has no x’s, means requirement isn’t being met

If a row has no x’s, means transition is unnecessary (or
requirement is missing/wasn’t stated!)

15

Product
requirements

Software
requirements

High
level/architect
ure design

Low
level/module
design

Implementation

traceability

Example: requirements to FSM traceability
R1: If the desk is not at its maximum height, and the up button is held, the motor shall be
commanded UP

R2: If the M button is pressed and released, and one of the numbered buttons [1, 2, 3] is
pressed and released within 10 seconds, then the current height shall be stored as a
preset for the corresponding numbered button

…

16

R1 R2 R3

T 1-2 X

T 2-1 X

1. STOPPED 2. MOVE_UP

button_UP_pressed ^ ㄱ(desk_height = max_height) /
motor_control := UP

ㄱbutton_UP_pressed v (desk_height = max_height) /
motor_control := STOPPED

Summary

17Image source

This week Next week

https://en.wikipedia.org/wiki/V-Model_(software_development)

