13: Scheduling
and RTOS




‘ Latency and priority

High priority interrupt: A (4 ms every 10 ms)

Lower priority interrupts: B (7 ms every 100ms),
C (Ims every 15 ms)

Can C fail to execute within 15 ms?
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‘ Different scheduling strategies

Static - figure it out ahead of time, CPU ‘ response time o, .
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Feasibility of scheduling periodic
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‘ Scheduling examples on the board
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‘ NoN-pensdic EOF (dynamo
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‘ Rate Monotonic Scheduling (RMS)

Fixed-priority, determined ahead of time
Each task has its own priority
Task with smallest period = highest priority

Pre-emptive (higher priority tasks interrupt
lower-priority tasks)

Guarantee of scheduling when utilization < 69.3%

p < n(2Y" - 1), (12.2)



Stepping back - Embedded
systems as systems

Application

Interfacing with hardware

Electrical
properties




‘ Real-Time Operating Systems

OS - manages system resources and provides
services to programs/processes/threads

RTOS - an OS with real-time constraints

e Scheduling policies

e Often support for prioritization

¢ Libraries for mutexes/semaphores
¢ Memory management
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Pros/cons to using an RTOS?
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Would you want to write your
own RTOS?



‘ “Free” RTOS considerations

Expertise for being versed in RTOS use isn't free
Usually when you buy software you also buy support

Patching in updates isn't free

Industry use of open-source is tricky

License may require release of code
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Does your current embedded project use an C
operating system, RTOS, kernel, software
executive, or scheduler of any kind?

81% of those not using
OS/RTOSes, said the main

8l
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https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
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Please select ALL of the operating systems G

you are currently using.

Embedded Linux
In-house/custom

FreeRTOS

Ubuntu

Android

Debian (Linux)

Microsoft (Windows 10)
Microsoft (Windows Embedded 7/Standard)
Texas Instruments RTOS
Wind River (VxWorks)

Green Hills (INTEGRITY)

Texas Instruments (DSP/BIOS)
Micrium (uC/0S-1)
AnalogDevices (VDK)

Keil (RTX)

Red Hat (IX Lunix)

Microsoft (Windows 7 Compact or earlier)
Express Logic (ThreadX)
Micrium (uC/0S-I)

QNX (QNX)

Android Go (Google)
Freescale MQX

Wittenstein High Integrity Systems...

CMX

Segger (embOS)
LynuxWorks (LynxOS)
Wind River (Linux)
OSEK

se: Currently using an operating system ECos
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21%

Regional Breakout

4% EMEA uses Embedded Linux much more than other regions.
4% APAC uses Android much more than other regions and uses
4% Embedded Linux much less that others.

Embedded
i 21% 21%  30% 15%
Android )
(Google) 13% 9% 14% 27%
M 2019 (N = 468)
Only Operating Systems with

2% or more are shown.
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