13: Scheduling
and RTOS

‘ Latency and priority

High priority interrupt: A (4 ms every 10 ms)

Lower priority interrupts: B (7 ms every 100ms),
C (Ims every 15 ms)

Can C fail to execute within 15 ms?

0

A

1

A

7 8

B

9

%

g (11 |12 | 13

15

s N AMAA C
AK NS A
C o VS

‘ Different scheduling strategies

Static - figure it out ahead of time, CPU ‘ response time o, .
follows the set schedule - execution time ¢
task < [2 > (‘)
Dyn amic: execution | T '
i A A >
. . . me
Earliest deadline first (EDF) i fii di
. . ° Q @ S ‘c:) w Q
Least laxity first (LLF) (laxity =d. - e) E|E| E| 8| §| £
g t o 5| B
©: S8 | B i ©
Gt g 2«
o

Feasibility of scheduling periodic

taSkS ;responserime 0, N
Feasibility: feasible if f.<d. for all i " execution time ¢;
! ! taSk - l,‘,.">>+< <[>
Utilization: % of time CPU spends |
executing tasks (vs idle) CE N
- i 2l E 8| g E 8
Necessary but not Sufficient condition s £l E E 5B
for feasibility: 5 Tk BE|F

Sum of e /p, (aka e,/d;) for all jis at most 1

Aka utilization <= 100%

‘ Scheduling examples on the board

10 frimgive, shic
C P C P b Y] 2 3 “ E P
Th 2 E \T,\ T \/\ l_ .
\1\ 113 AR 0
71%les Yo z,t/p«) 2.5l =5y v,
S non- @%W\P\’W‘L, Sone
g |® 0\1suse7$v\\on\z
T 21\ i 0l | |-1ilo] [<]1]o
Tl 12 - 0)- O ~-0-|--0
T}‘ @ I « 0
S & |

‘ NoN-pensdic EOF (dynamo

: U (WU,
@&\wv\@ﬁu. [Dedlin 5 l“?_?wa\ﬁ;%'a o i Q: 3"\1 5 ¢
wol3la | |20 l 12]- |- 1 lo] |
wl | | %[5 --11 o] [rJo| | |
NoN- preom e
Q,&\w Do IOUA‘\?W O 1 2 3 % s ¢ % 38 a& P L - w W B
W O i £ l?) 7.1} 1) ‘ Note that we could have scheduled
w1l |6 | l~ - & | €32/ \0 | [Ehddlw"bhﬁdkh
Te S | v |13 - =l-] =[~][w]2]2| Al & abomingvhenshd |
QuomgtiaL: Feariest deadine frst" 10 schedule
(8\’\\\ O\CCG(MB O 1 ¢ 3% 9§ 6 3 F a 10 (1 1 v v s
(S E‘DT’B Ty {2l2]ilo] |
T l e, w|/zl2[y 0] |

Tg |22\ |O |

‘ Rate Monotonic Scheduling (RMS)

Fixed-priority, determined ahead of time
Each task has its own priority
Task with smallest period = highest priority

Pre-emptive (higher priority tasks interrupt
lower-priority tasks)

Guarantee of scheduling when utilization < 69.3%

p < n(2Y" - 1), (12.2)

Stepping back - Embedded
systems as systems

Application

Interfacing with hardware

Electrical
properties

‘ Real-Time Operating Systems

OS - manages system resources and provides
services to programs/processes/threads

RTOS - an OS with real-time constraints

e Scheduling policies

e Often support for prioritization

¢ Libraries for mutexes/semaphores
¢ Memory management

Application

RTOS

Interfacing with hardware

Electrical
properties

10

0

Pros/cons to using an RTOS?

0

Would you want to write your
own RTOS?

‘ “Free” RTOS considerations

Expertise for being versed in RTOS use isn't free
Usually when you buy software you also buy support

Patching in updates isn't free

Industry use of open-source is tricky

License may require release of code

14

Does your current embedded project use an C
operating system, RTOS, kernel, software
executive, or scheduler of any kind?

81% of those not using
OS/RTOSes, said the main

8l
o 72% 69% reason for NOT using is simply
70 65% 67% 68% that they are not needed.

60
50

40
30
20

35%
33% % 32%
28% 1%

10

Yes No

m2019 (N =613) 2017(N=818) m2015(N=1,125) w2014(N=1493) m2013(N=2,082)

Tim embedded 2019 Embedded Markets Study © 2019 Copyright by AspenCore. Al rights reserved.

Image source 15

https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf

57

Please select ALL of the operating systems G

you are currently using.

Embedded Linux
In-house/custom

FreeRTOS

Ubuntu

Android

Debian (Linux)

Microsoft (Windows 10)
Microsoft (Windows Embedded 7/Standard)
Texas Instruments RTOS
Wind River (VxWorks)

Green Hills (INTEGRITY)

Texas Instruments (DSP/BIOS)
Micrium (uC/0S-1)
AnalogDevices (VDK)

Keil (RTX)

Red Hat (IX Lunix)

Microsoft (Windows 7 Compact or earlier)
Express Logic (ThreadX)
Micrium (uC/0S-I)

QNX (QNX)

Android Go (Google)
Freescale MQX

Wittenstein High Integrity Systems...

CMX

Segger (embOS)
LynuxWorks (LynxOS)
Wind River (Linux)
OSEK

se: Currently using an operating system ECos

EE |ms EmbEddEd 2019 Embedded Markets Study © 2019 Copyright by AspenCore. All rights reserved

21%

Regional Breakout

4% EMEA uses Embedded Linux much more than other regions.
4% APAC uses Android much more than other regions and uses
4% Embedded Linux much less that others.

Embedded
i 21% 21% 30% 15%
Android)
(Google) 13% 9% 14% 27%
M 2019 (N = 468)
Only Operating Systems with

2% or more are shown.

Image source 16

https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf

