
12: Concurrency
Pitfalls

Project
Teams are assigned

Proposal due by next Tuesday at 11pm

Parts will be ordered by Friday the 14th (watch
your e-mail for a form after we look at your
proposals)

2

Scheduling periodic tasks
n tasks each with a given period and
worst case execution time

Assume task’s deadline is its period

Assume independence and 0 cost context
switching

Can we schedule this so that all tasks
meet their deadlines?

3

Scheduling
Decide when CPU runs what task so that deadlines are met

Soft: correctness “degrades” if deadlines aren’t met

vs

Hard: correctness fails if deadlines aren’t met

Dynamic: done at run-time

vs

Static: done at compile-time

Preemptive: task can interrupt lower-priority task

vs

Non-preemptive: tasks can’t interrupt each other

4

Threading-like behavior without library/os/scheduler

“DIY concurrency”

Each task keeps track of the state it needs
void loop() {

 poll_inputs();

 task1();

 task2();

 task3();

} 5

Cyclic Execution

6

Multi-rate cyclic execution

void loop() {

 poll_inputs();

 task1();

 poll_inputs();

 task2();

 poll_inputs();

 task3();

}

Or even…
void loop() {

 poll_inputs();

 task1_step1();

 poll_inputs();

 task1_step2();

 poll_inputs();

 task2_step1();

 poll_inputs();

 task3_step1();

 …
}

Latency
Time that a task has to wait to start executing

Cyclic tasks - time between execution of task

Basically: main loop time

Interrupts - time between trigger and ISR entry

Threads - time between arrival and start

7

void loop() {

 poll_inputs();

 task1();

 task2();

 task3();

}

Worst-case time:

Tloop = Tpoll_inputs + Ttask1 + Ttask2 + Ttask3

(as long as worst-case time of tasks is known)
8

Cyclic Execution timing analysis

Timing analysis + interrupts
void loop() {

 task1();

 task2();

 task3();

}

9

void input_isr() {

 ...

}

Assume Ttask1 + Ttask2 + Ttask3 = 200 ms
Assume interrupt takes 2 ms and happens at most every 20 ms
Worst case execution time of loop + interrupts = ?

“
What are the challenges in

statically computing
worst-case execution time?

10

11

Other approaches
Time it dynamically

Using special debug registers

Approximate with timer/counter

Issues?

Hybrid (dynamically measure short paths and
statically add it up)

Many tools on the market do this

Threads and scheduling
Instead of this
void loop() {

 task1();

 task2();

 task3();

}

12

CPU schedules each task
as its own thread

Execution time

Task 1 Task 2 Task 1 Task 3

More general multithreading
OS exposes an API for control

(...what OS?!)
Library (like pthreads in C) takes care of things
 pthread_create(&threads[i], NULL, perform_work, &thread_args[i]);

Scheduler schedules threads

More open to control/data pitfalls

For now: we are talking about single-processor systems

13

Race condition - circular buffer
Race condition: order in which two threads access a
resource affects outcome of the program

Check that a circular buffer is empty (assume we know it isn’t full):
start_i == end_i

Check that a circular buffer is not about to be full:

(end_i + 1) % n != start_i

14

n = 4 , start_i = 2, end_i = 1

main loop:
// if not empty, take from buffer

if(start_i != end_i) {

 Serial.println(buffer[start_i]);

 start_i = (start_i + 1) % n

}

interrupt:
// if still room, store in buffer

if((end_i + 1) % n != start_i) {

 buffer[end_i] = something;

 end_i = (end_i + 1) % n

}

15

Mutual exclusion (mutex/lock)
Mechanism that can only be owned by one thread at
a time

Commonly: blocks execution of thread until lock is acquired

Acquire lock before accessing shared resource, then
release it

pthread_mutex_lock(&x_lock); // blocks until lock is free

//access x

pthread_mutex_unlock(&x_lock);

16

Deadlock

pthread_mutex_lock(&lock1);

pthread_mutex_lock(&lock2);

// thread A task

pthread_mutex_unlock(&lock2);

pthread_mutex_unlock(&lock1);

pthread_mutex_lock(&lock2);

pthread_mutex_lock(&lock1);

// thread B task

pthread_mutex_unlock(&lock1);

pthread_mutex_unlock(&lock2);

17

Memory consistency
w = 1;

x = y;

y = 1;

z = w;

18

Depending on compiler optimization,
“independent” operations may be

rearranged within a thread!!

Can we guarantee that at least one of {x, z} will be 1
by the time both threads finish executing?

Priority
Remember interrupt priorities?

Higher-priority interrupt can interrupt lower-priority interrupt but not
the other way around

Task/thread priorities are the same idea
In preemptive system, higher-priority tasks can start executing
before lower-priority tasks are done

Various configuration of # of supported priorities, dynamic vs
static priorities, etc

19

Priority inversion

20

Mutex
acquired

Higher priority task

Lower priority task

Needs
mutex

Lower priority task
(elevated)

Mutex
released

Mutex
acquired

