
08: Embedded
programming

Project
Brainstorm/propose projects on Ed thread
Next week, we’ll open a form to rank your top choices and match you with a team
Project must:

Use PWM, ADC, or DAC
Have at least one interrupt service routine
Have a watchdog timer (doesn’t count as your ISR)
Use at least one of: Serial communication, Wifi, Timer/counter

Most project ideas can be refined to meet these requirements; focus on the idea for
now
Final writeup will be required to have process and modeling & verification
documentation

2

Why we’re thinking about the
project so early
Time to find you resources

Time to refine the design

Time to order supplies

Each team will have a small ($40) budget

3

4

Skills in upcoming labs

Project ideas
⬢ Games

⬡ Electronic whack-a-mole
⬢ Art

⬡ Music, visual art, etc
⬢ Controllers

⬡ Keyboard, game controller, etc prototype
⬢ Other

⬡ Plant moisture/light monitor
5

6

“
Why do we need to know

about the type and layout of
memory on an MCU?

7

8

Knowing about limitations (motivates
optimizations)
 gives you a sense of feasibility
 if you need to add hardware
 limited number of writes to a location
Which memory is volatile
Understanding of memory layout helps you
diagnose bugs

Keywords for sharing data
static

Value of local variable will persist between function calls (is in memory rather
than the stack)
Useful in a function like loop() when you don’t want to declare a global variable
Still local to the function

volatile
Means variable can change outside of main execution (e.g. by an ISR)
Always use volatile when working with variables that change in ISRs!
Tells compiler not to make certain optimizations (never keep value in a register)

9

“

10

Besides speed and memory
use, what are some other

metrics we may target when
optimizing embedded code?

Embedded programming
Reasons embedded programming differs from
general-purpose computing:

⬢ Cannot assume portability
⬢ Parallelism from interrupts
⬢ Limited by hardware

⬡ memory, power, cpu speed, I/O latency
⬢ Care more about scheduling/deadlines
⬢ Safety-critical applications

11

Example tradeoffs - inline functions
Compiler copies the contents of the function any time a call
to the function appears in code
inline int add(int a, int b) {

return a + b;
}
...
void main() {

...
var3 = add(var1, var2)

}

12

void main() {
…
var3 = var1 + var2

}

Example tradeoffs – lookup tables
A switch statement or an array in memory gives the answer
for every possible input, instead of doing a computation
switch(x) {

case 3:
return 2;
break;

case 10:
return 3;
break;

case 1:
return 1;
break;

13

Example tradeoffs – global variables
Declare a global variable that sits in memory
instead of passing it around in function calls

14

“
Why is recursion dangerous

on an MCU?

15

Coding practices: portability
Word size

int will mean different things on an 8-bit CPU vs a
32-bit CPU

Tip: be specific about size

int8, uint16, etc

What if you need to emulate a 16-bit int on a 8-bit CPU?

16

w x
y z

Fake it with multi-precision math!

“
Floating point is often

avoided in MCU applications.
Why?

17

Why
it might not exist for 8-bit or 16-bit sizes?
it might take more instructions to do addition/multiplication

takes more CPU cycles
may require more complicated hardware (FPU, or floating point unit)

some MCUs straight up don’t have one
quantization optimizations for sensor inputs that don’t require floating
point

18

19

Represent fractional values with implicit fixed divisor
Decimal example: if fixed divisor were 1000, we would represent 0.04 as
“40” (e.g. counting by milliseconds instead of seconds)

In binary, we use powers of two as divisors

Write format as “x.y”, with x digits before decimal point mantissa and y
after

All values use this format (position of mantissa doesn’t change
between variables)

20

Fixed point

Fixed point example
Interpret the bits “01010110” in different formats:

21

format regular/int 1.7 4.4 5.3

divisor n/a 2^7 = 128

Interpreted
value

86

Fixed point math
Addition/subtraction work as usual

Let the CPU perform the computation and
interpret the mantissa at the same spot

Multiplication: need to truncate

22

w x

y z

z * x

z * w

y * w

y * x

qr

Summary
⬢ Your code gets turned into assembly gets turned

into machine code
⬢ Machine code is executed on the CPU
⬢ Data for programs is stored in different areas of

memory
⬢ Because of these architectures, embedded

programming has some unique considerations

23

